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Abstract

This paper investigates the problem of online statistical inference of model parameters in

stochastic optimization problems via the Kiefer-Wolfowitz algorithm with random search di-

rections. We first present the asymptotic distribution for the Polyak-Ruppert-averaging type

Kiefer-Wolfowitz (AKW) estimators, whose asymptotic covariance matrices depend on the dis-

tribution of search directions and the function-value query complexity. The distributional result

reflects the trade-off between statistical efficiency and function query complexity. We further

analyze the choice of random search directions to minimize certain summary statistics of the

asymptotic covariance matrix. Based on the asymptotic distribution, we conduct online statis-

tical inference by providing two construction procedures of valid confidence intervals.

Keywords: Asymptotic normality, Kiefer-Wolfowitz stochastic approximation, online inference,

stochastic optimization

1 Introduction

Stochastic optimization algorithms, introduced by Robbins and Monro (1951); Kiefer and Wolfowitz

(1952), have been widely used in statistical estimation, especially for large-scale datasets and online

learning where the sample arrives sequentially (e.g., web search queries, transactional data). The

Robbins-Monro algorithm (Robbins and Monro, 1951), often known as the stochastic gradient

descent, is perhaps the most popular algorithm in stochastic optimization and has found a wide

range of applications in statistics and machine learning. Nevertheless, in many modern applications,

the gradient information is not available. For example, the objective function may be embedded

in a black box and the user can only access the noisy objective value for a given input. In such
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cases, the Kiefer-Wolfowitz algorithm (Kiefer and Wolfowitz, 1952) becomes a natural choice as it

is completely free of gradient computation. Despite being equipped with an evident computational

advantage to avoid gradient measurements, the Kiefer-Wolfowitz algorithm has been historically

out of practice as compared to the Robbins-Monro counterpart. Nonetheless, heralded by the big

data era, there has been a restoration of the interest of gradient-free optimization in a wide range of

applications in recent years (Conn et al., 2009; Nesterov and Spokoiny, 2017). We briefly highlight

a few of them to motivate our paper.

• In some bandit problems, one may only have black-box access to individual objective values

but not to their gradients (Flaxman et al., 2005; Shamir, 2017). Other examples include

graphical models and variational inference problems, where the objective is defined variation-

ally (Wainwright and Jordan, 2008), and the explicit differentiation can be difficult.

• In some scenarios, the computation of gradient information is possible but very expensive.

For example, in the online sensor selection problem (Joshi and Boyd, 2008), evaluating the

stochastic gradient requires the inverse of matrices, which generates O(d3) computation cost

per iteration, where d is the number of sensors in the network. In addition, the storage for

gradient calculation also requires an O(d3) memory, which could be practically infeasible.

• In some statistical problems such as quantile regression and its variants (Koenker, 2005), the

objective function is not differentiable. Extending the gradient definition to nonsmooth func-

tions is generally nontrivial, and techniques of defining sets of local differential characteristics

suffer from the incompleteness of chain rule in complex problems (Nesterov, 2005).

This paper aims to study the asymptotic properties of the Kiefer-Wolfowitz stochastic opti-

mization and conduct online statistical inference. In particular, we consider the problem,

θ? = argmin F (θ), where F (θ) := EPζ [f(θ; ζ)] =

∫
f(θ; ζ)dPζ , (1)

where f(θ; ζ) is a convex individual loss function for a data point ζ, F (θ) is the population loss

function, and θ? is the true underlying parameter of a fixed dimension d. Let θ0 denote any given

initial point. Given a sequentially arriving online sample {ζn}, the Robbins and Monro (1951)

algorithm (RM), also known as the stochastic gradient descent (SGD), iteratively updates,
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(RM) θ
(RM)
n = θ

(RM)
n−1 − ηng(θn−1; ζn), (2)

where {ηn} is a positive non-increasing step-size sequence, and g(θ; ζ) denotes the stochastic gra-

dient, i.e., g(θ; ζ) = ∇f(θ; ζ). In the scenarios that direct gradient measurements are inaccessible

to practitioners, the Kiefer and Wolfowitz (1952) algorithm (KW) becomes the natural choice, as

(KW) θ
(KW)
n = θ

(KW)
n−1 − ηnĝ(θn−1; ζn), (3)

where ĝ(θn−1; ζn) is an estimator of g(θn−1; ζn). Under the univariate framework (d = 1), Kiefer

and Wolfowitz (1952) considered the finite-difference approximation

ĝ(θn−1; ζn) =
f(θn−1 + hn; ζn)− f(θn−1; ζn)

hn
, (4)

where hn is be a positive deterministic sequence that goes to zero. Blum (1954) later extended the

algorithm to the multivariate case and proved its almost sure convergence. This pioneering work

extended in various directions of statistics and control theory (see, e.g., Fabian (1967, 1978); Hall

and Heyde (1980); Ruppert (1982); Chen (1988); Polyak and Tsybakov (1990); Spall (1992); Chen

et al. (1999); Spall (2000); Hall and Molchanov (2003); Dippon (2003); Mokkadem and Pelletier

(2007); Broadie et al. (2011)). In the optimization literature, the Kiefer-Wolfowitz (KW) algorithm

is often referred to as the gradient-free stochastic optimization, or zeroth-order SGD (Agarwal

et al., 2010, 2011; Jamieson et al., 2012; Ghadimi and Lan, 2013; Duchi et al., 2015; Shamir, 2017;

Nesterov and Spokoiny, 2017; Wang et al., 2018, among others).

For the (RM) algorithm in (2), Ruppert (1988) and Polyak and Juditsky (1992) characterize the

limiting distribution and statistical efficiency of the averaged iterate θ
(RM)
n = 1

n

∑n
i=1 θ

(RM)
i by

√
n
(
θ
(RM)
n − θ?

)
=⇒ N

(
0, H−1SH−1

)
, (5)

where H = ∇2F (θ?) is the Hessian matrix of F (θ) at θ = θ?, and S = E[∇f(θ?; ζ)∇f(θ?; ζ)>] is

the Gram matrix of the stochastic gradient. Under a well-specified model, this asymptotic covari-

ance matrix matches the inverse Fisher information and the averaged (RM) estimator is asymptot-

ically efficient. Based on the limiting distribution result (5), there are many recent research efforts

devoted to statistical inference for (RM). A brief survey is conducted at the end of the introduction.

For the (KW) scheme, we can similarly construct the averaged Kiefer-Wolfowitz (AKW) estimator
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(AKW) θ
(KW)
n = 1

n

n∑
i=1
θ
(KW)
i . (6)

As compared to well-established asymptotic properties of (RM), study of the asymptotics of

(AKW) is limited, particularly with a random sampling direction in multivariate (KW). In this paper,

we study the (KW) algorithm (3) with random search directions {vi}ni=1
i.i.d.∼ Pv, i.e., at each iteration

i = 1, 2, . . . , n, a random direction vi is sampled independently from Pv, and the (KW) gradient

ĝhn,vn(θn−1; ζn) =
f(θn−1 + hnvn; ζn)− f(θn−1; ζn)

hn
vn. (7)

Compared to the (RM) scheme, (KW) introduces additional randomness into the stochastic gradient

estimator through {vn}. Indeed, as one can see from our main result in Theorem 3.3, (AKW) is no

longer statistically efficient and its asymptotic covariance structure depends on the distribution Pv.

It opens the room for the investigation on the impact of Pv (see Section 3.1 for details). We further

extend the estimator to utilize multiple function-value queries per step and establish an online

statistical inference framework. We summarize our main results and contributions as follows,

• First, we quantify the asymptotic covariance structure of (AKW) in Theorem 3.3. Since the

asymptotic distribution depends on the choice of the direction variable v, we provide an

introductory analysis on the asymptotic performance for different choices of random directions

for constructing (AKW) estimators (see Section 3.1).

• The efficiency loss of (AKW) is due to the information constraint as one evaluates only two

function values at each iteration. We analyze the (AKW) estimators in which multiple function

queries can be assessed at each iteration, and show that the asymptotic covariance matrix

decreases as the number of function queries m+1 increases (see Section 3.2). Moreover, (AKW)

achieves asymptotic statistical efficiency as m→∞. We further show that when v is sampled

without replacement from Pv with a discrete uniform distribution of any orthonormal basis,

(AKW) achieves asymptotic statistical efficiency with d+ 1 function queries per iteration.

• Based on the asymptotic distribution, we propose two online statistical inference procedures.

The first one is using a plug-in estimator of the asymptotic covariance matrix, which sepa-

rately estimates the Hessian matrix and Gram matrix of the (KW) gradients (with additional
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function-value queries, see Theorem 4.3). The second procedure is to characterize the distri-

bution of intermediate (KW) iterates as a stochastic process and construct an asymptotically

pivotal statistic by normalizing the (AKW) estimator, without directly estimating the covari-

ance matrix. This inference procedure is inspired by the “random scaling” method proposed

in Lee et al. (2022) that considers the online inference for the (RM) scheme. These two proce-

dures have their advantages and disadvantages: the plug-in approach leads to better empirical

performance but requires additional function-value queries to estimate the Hessian matrix,

while the other one is more efficient in both computation and storage, though its finite-sample

performance is inferior in practice when the dimension is large. A practitioner may choose the

approach suitable to her computational resources and requirement of the inference accuracy.

Lastly, we provide a brief literature survey on the recent works for statistical inference for the

(RM)-type SGD algorithms. Chen et al. (2020) developed a batch-means estimator of the limit-

ing covariance matrix H−1SH−1 in (5), which only uses the stochastic gradient information (i.e.,

without estimating any Hessian matrices). Zhu et al. (2021) further extended the batch-means

method in Chen et al. (2020) to a fully online covariance estimator. Lee et al. (2022) extended the

results in Polyak and Juditsky (1992) to a functional central limit theorem and utilize it to pro-

pose a novel online inference procedure that allows for efficient implementation. Fang et al. (2017)

presented a perturbation-based resampling procedure for inference. Su and Zhu (2018) proposed

a tree-structured inference scheme, which splits the SGD into several threads to construct confi-

dence intervals. Liang and Su (2019) introduced a moment-adjusted method and its corresponding

inference procedure. Toulis and Airoldi (2017) considered the implicit SGD, and investigate the

statistical inference problem under the variant. Duchi and Ruan (2021) studied the stochastic

optimization problem with constraints and investigate its optimality properties. Chao and Cheng

(2019) proposed a class of generalized regularized dual averaging (RDA) algorithms and make un-

certainty quantification possible for online `1-penalized problems. Shi et al. (2021) developed an

online estimation procedure for high-dimensional statistical inference. Chen et al. (2021) studied

statistical inference of online decision-making problems via SGD in a contextual bandit setting.
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1.1 Notations and organization of the paper

We write vectors in boldface letters (e.g., θ and v) and scalers in lightface letters (e.g., η). For

any positive integer n, we use [n] as a shorthand for the discrete set {1, 2, · · · , n}. Let {ek}dk=1

be the standard basis in Rd with the k-th coordinate as 1 and the other coordinates as 0. Denote

Id as the identity matrix in Rd×d. Let ‖ · ‖ denote the standard Euclidean norm for vectors and

the spectral norm for matrices. We use Ak` and An,k` to denote the (k, `)-th element of matrices

A,An ∈ Rd×d, respectively, for all k, ` ∈ [d]. Furthermore, we denote by diag(v) a matrix in Rd×d

whose main diagonal is the same as the vector v and off-diagonal elements are zero, for some vector

v ∈ Rd. With a slight abuse of notation, for a matrix M ∈ Rd×d, we also let diag(M) denote a

Rd×d diagonal matrix with same diagonal elements as matrix M . We use the standard Loewner

order notation A � 0 if a matrix A is positive semi-definite. We use θ(RM) and θ(KW) to denote the

iterates generated by the (RM) scheme and the (KW) scheme, respectively. We use θ̂
(ERM)

for the

offline empirical risk minimizer, i.e., θ̂
(ERM)

= argminθ
1
n

∑n
i=1 f(θ; ζi). As we focus on the (KW)

scheme in this paper, we sometimes omit the superscript (KW) in the estimator to make room for

the other notations. In derivations of the (KW) estimator, we denote the finite difference of f(·) as,

∆h,vf(θ; ζ) = f(θ + hv; ζ)− f(θ; ζ), (8)

for some spacing parameter h ∈ R+ and search vector v ∈ Rd. We use En to denote the conditional

expectation with respect to the natural filtration, i.e.,

En[θn+1] := E[θn+1|Fn], Fn := σ{θk, ζk|k ≤ n}.

We use the O(·) notation to hide universal constants independent of the sample size n.

The remainder of the paper is organized as follows. In Section 2, we describe the Kiefer-

Wolfowitz algorithm with random search directions along with three illustrative examples of the

classical regression problems. We also provide a technical lemma to characterize the limiting behav-

ior of the (KW) gradient, which leads to the distributional constraint of the random direction vector.

In Section 3, we first introduce the technical assumptions before we present the finite-sample rate

of convergence of the (KW) estimator. We further provide the asymptotic distribution of the (AKW)

estimator, accompanied by discussions on the statistical (in)efficiency. We highlight a comparison of
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the choices of the direction distributions in Section 3.1, and further extend the theoretical analysis

to multi-query settings of the (KW) algorithm in Section 3.2. Based on the established asymptotic

distribution results, we propose two types of online statistical inference procedures in Section 4. A

functional extension of the distributional analysis of (KW) as a stochastic process is also provided.

Numerical experiments in Section 5 lend empirical support to our theory. Further discussions are

provided in Section 6 and all proofs are relegated to the supplementary material.

2 Kiefer-Wolfowitz Algorithm

In this section, we introduce the general form of the Kiefer-Wolfowitz (KW) gradient estimator and

the corresponding iterative algorithm θn = θn−1 − ηnĝ(θn−1; ζn). In the seminal work by Blum

(1954), the (KW) gradient estimator ĝ(θn−1; ζn) is constructed by approximating the stochastic

gradient g(θn−1; ζn) using the canonical basis of Rd, {e1, e2, . . . , ed}, as search directions. In

particular, given any θ ∈ Rd and ζ ∼ Pζ , the k-th coordinate of the (KW) gradient estimator(
ĝh,e(θ; ζ)

)
k

=
f(θ + hek; ζ)− f(θ; ζ)

h
, for k = 1, 2, . . . , d, (9)

where h is a spacing parameter for approximation. At each iteration, (9) queries d+1 function values

from d fixed directions {ek}dk=1. To reduce the query complexity, a random difference becomes a

natural choice. Koronacki (1975) introduced a random version of the (KW) algorithm using a

sequence of random unit vectors that are independent and uniformly distributed on the unit sphere

or unit cube. Spall (1992) also provided a random direction version of the (KW) algorithm, named

as the simultaneous perturbation stochastic approximation (SPSA) algorithm and later extended to

several variants Chen et al. (1999); Spall (2000); He et al. (2003). These random direction methods

can reduce the bias in gradient estimates as compared to their non-random counterparts. In the

following, we write the (KW) algorithm with general random search directions, as in (7),

θn = θn−1 − ηnĝhn,vn(θn−1; ζn),

where ĝh,v(θ; ζ) :=
1

h
∆h,vf(θ; ζ)v =

f(θ + hv; ζ)− f(θ; ζ)

h
v. (10)

Here {vn} is sampled from an underlying distribution Pv satisfying certain conditions (see Assump-

tion 4 in Section 3). At each iteration n, the algorithm samples a direction vector vn independently
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from Pv, and makes two solitary function-value queries, f(θn−1; ζn) and f(θn−1 + hnvn; ζn). We

refer to the (KW) gradient estimator ĝhn,vn(θn−1, ζn) in (10) as a two-query finite-difference approx-

imation of the stochastic gradient. If one is allowed to make additional function-value queries, an

averaging of the function values from multiple directions generates a multi-query stochastic gradient

estimator with reduced variance. In particular, at each iteration n, the practitioner makes m + 1

queries {f(θn−1; ζn), f(θn−1+hnv
(j)
n ; ζn)}1≤j≤m via m random directions

{
v
(j)
n

}
sampled from Pv.

If Pv is a finite distribution, practitioners may choose to sample with or without replacement. In

summary, an (m+ 1)-query (KW) algorithm constructs a stochastic gradient estimator

g(m)
n (θn−1; ζn) =

1

m

m∑
j=1

ĝ
hn,v

(j)
n

(θn−1; ζn) =
1

mhn

m∑
j=1

∆
hn,v

(j)
n
f(θn−1; ζn)v(j)n , (11)

at each iteration n, and updates θn = θn−1 − ηng(m)
n (θn−1; ζn). Here we restrict the procedure to

sampling from the same distribution Pv independently across different iterations. We use θ
(m)
n to

denote the final (KW) estimator using the above (m+ 1)-query finite-difference approximation.

We now provide some illustrative examples of the two-query (KW) estimator ĝhn,vn in (10)

used in popular statistical models, and we will refer to these examples throughout the paper. A

multi-query extension of the examples can be constructed accordingly.

Example 2.1 (Linear Regression). Consider a linear regression model yi = x>i θ
? + εi where

{ζi = (xi, yi), i = 1, 2, . . . , n} is an i.i.d. sample of ζ = (x, y) and the noise εi ∼ N (0, σ2). We

use a quadratic loss function f(θ; ζ) = (y − x>θ)2. Therefore, the stochastic gradient ∇f(θ; ζ) =(
x>θ − y

)
x, and the (KW) gradient estimator ĝh,v(θ; {x, y}) in (10) becomes

ĝh,v(θ; {x, y}) =
1

h

[(
y − x>(θ + hv)

)2 − (y − x>θ)2]v = vv>
(
x>θ − y

)
x+ h(x>v)2v.

Example 2.2 (Logistic Regression). Consider a logistic regression model with a binary response

yi ∈ {−1, 1} generated by Pr(yi|xi) =
(
1 + exp

(
−yix>i θ

?
))−1

. The individual loss function f(θ; ζ) =

log
(
1 + exp(−yx>θ)

)
. The stochastic gradient ∇f(θ; ζ) = −yx

(
1 + exp(yx>θ)

)−1
, and the (KW)

gradient estimator ĝh,v(θ; {x, y}) in (10) becomes

ĝh,v(θ; {x, y}) =
v

h

[
log
(
1 + exp(−yx>(θ + hv))

)
− log

(
1 + exp(−yx>θ)

)]
=

−yvv>x
1 + exp(yx>θ)

+
y2(x>v)2 exp(yx>θ)hv

2(1 + exp(yx>θ))2
+O(h2), as h→ 0+,
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under some regularity conditions on θ and the distribution of x.

Example 2.3 (Quantile Regression). Consider a quantile regression model yi = x>i θ
? + εi where

{ζi = (xi, yi), i = 1, 2, . . . , n} is an i.i.d. sample of ζ = (x, y) and the noise satisfies Pr(εi ≤

0|xi) = τ . The individual loss f(θ; ζ) = ρτ (y − x>θ), where ρτ (z) = z(τ − 1{z<0}). Although ρτ is

non-differentiable, the (KW) gradient estimator ĝh,v is well-defined and takes the following form,

ĝh,v(θ; {x, y}) =
v

h

[
ρτ
(
y − x>(θ + hv)

)
− ρτ

(
y − x>θ

)]
=vv>x

(
τ − 1{y−x>θ<0}

)
, for 0 < h <

∣∣∣∣y − x>θx>v

∣∣∣∣ .
We note that for the (RM) scheme with differentiable loss functions, the stochastic gradient is an

unbiased estimator of the population gradient under very mild assumption, i.e., Eζg(θ; ζ) = ∇F (θ).

In contrast, the (KW) gradient estimator is no longer an unbiased estimator of ∇F (θ). In the

following lemma, we precisely quantifies the bias incurred by the (KW) gradient estimator.

Lemma 2.4. We assume that the population loss function F (·) is twice continuously differentiable

and Lf -smooth, i.e., ∇2F (θ) � LfId for any θ ∈ Rd. Given any fixed parameter θ ∈ Rd, suppose

the random direction vector v is independent from ζ, we have

‖E ĝh,v(θ; ζ)−∇F (θ)‖ ≤
∥∥∥E(vv> − Id)∇F (θ)

∥∥∥+
h

2
LfE‖v‖3,

where the expectation in E ĝh,v(θ; ζ) takes over both the randomness in v and ζ.

The proof of Lemma 2.4 is provided in Section A of the supplementary material. To reduce

the bias in the (KW) gradient, Lemma 2.4 indicates that one should choose the random direction

vn that satisfies the distributional constraint E[vnv
>
n ] = Id (see Assumption 4 in Section 3). We

will further conduct a comprehensive analysis in Section 3.1 on different choices of distributions Pv

satisfying the condition E[vnv
>
n ] = Id. Despite the existence of the bias, as the spacing parameter

hn → 0, the bias convergences to zero asymptotically.

3 Theoretical Results

We first introduce some regularity assumptions on the population loss F (θ) and the individual loss

f(θ; ζ). To simplify the illustration, we present the following assumptions first, even though the
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main results remain to hold under some weakened assumptions. The relaxation is discussed below,

and detailed theoretical derivation is relegated to Section A.2 of the supplementary material.

Assumption 1. The population loss function F (θ) is twice continuously differentiable. Moreover,

there exists Lf > λ > 0, such that, λId � ∇2F (θ) � LfId for any θ ∈ Rd.

Assumption 2. Assume E [∇f(θ; ζn)] = ∇F (θ) for any θ ∈ Rd. Moreover, for some 0 < δ ≤ 2,

there exists M > 0 such that E‖∇f(θ; ζn)−∇F (θ)‖2+δ ≤M
(
‖θ − θ?‖2+δ + 1

)
.

Assumption 3. There are constants Lh, Lp > 0 such that for any θ,θ′ ∈ Rd,

E
∥∥∇2f(θ; ζn)−∇2f(θ′; ζn)

∥∥2 ≤ Lh‖θ − θ′‖2, E
∥∥[∇2f(θ?; ζn)]2 −H2

∥∥ ≤ Lp,
where H is the Hessian matrix of the population loss function F (·), i.e., H = ∇2F (θ?).

Assumption 4. We adopt i.i.d. random direction vectors {vn} from some common distribution

v ∼ Pv such that E[vv>] = Id. Moreover, assume that the (6 + 3δ)-th moment of v is bounded.

We discuss the above assumptions and compare them with the standard conditions in the liter-

ature of (RM)-type SGD inference. Assumption 1 requires the population loss function F (·) to be

λ-strongly convex and Lf -smooth, which is widely assumed in the existing literature of statistical

inference on stochastic optimization (Polyak and Juditsky, 1992; Chen et al., 2020). Note that it

is possible to replace this assumption with a weaker one that only assumes local strong convexity

in the neighborhood of the true parameter θ?(Su and Zhu, 2018; Duchi and Ruan, 2021). This

weaker condition satisfies the setting of logistic regression (Example 2.2). To highlight the main

contributions of the paper, we discuss its relaxed form of Assumption 1 in Section A.2 of the supple-

mentary material. Assumption 2 introduces the unbiasedness condition on the stochastic gradient

∇f(θ; ζ) when the individual loss function f(θ; ζ) is smooth. The (2 + δ)-th moment condition is

the classical Lyapunov condition used in the derivation of asymptotic normality. Relaxation to this

assumption can be made to handle nonsmooth loss functions f(θ; ζ), such as the quantile regression

as described in Example 2.3. We defer the discussion of this weaker assumption to Section A.2 in

the supplementary material. The statements in Assumption 3 introduce the Lipschitz continuity

condition and the concentration condition on the Hessian matrix. Assumption 4 guarantees that
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the (KW) gradient ĝh,v(θ; ζ) is an asymptotically unbiased estimator of ∇F (θ) when the spacing

parameter hn decreases to 0, as suggested by Lemma 2.4. The moment condition of v in Assump-

tion 4 is imposed for technical simplicity and could be possibly weakened. We provide several

examples of Pv in Section 3.1.

Before we derive the asymptotic distribution for (AKW), we first provide a finite sample error

bound for the final (KW) iterate θn:

Proposition 3.1. Assume Assumptions 1, 2, and 4 hold. Set the step size as ηn = η0n
−α for some

constant η0 > 0 and α ∈
(
1
2 , 1
)

and the spacing parameter as hn = h0n
−γ for some constant h0 > 0,

and γ ∈
(
1
2 , 1
)
. The (KW) iterate θn converges to θ? almost surely. Furthermore, for sufficiently

large n, we have for 0 < δ ≤ 2,

E‖θn − θ?‖2+δ ≤ Cn−α(2+δ)/2, (12)

where the constant C depends on d, λ, Lf , α, γ, η0, h0.

The proof of Proposition 3.1 and the explicit dependency of the constant C in (12) on the

parameters and the initial value θ0 are provided in Remark A.1. A similar error bound is given

by Duchi et al. (2015) in terms of the function values for δ = 0. We generalize the result to the

(2 + δ)-moment error bound on the parameter θ, where δ ∈ (0, 2] is assumed in Assumption 2 for

the purpose of derivation of asymptotic normality. Proposition 3.1 suggests that the asymptotic

rate of the (KW) estimator matches the best convergence rate of the (RM) estimator (Moulines and

Bach, 2011) when the spacing parameter hn = h0n
−γ is a decreasing sequence with γ ∈ (12 , 1).

Recall that to characterize the asymptotic behavior of (RM) iterates, we denote by S, the Gram

matrix of ∇f(θ; ζ) at the true parameter θ?, i.e., S := E
[
∇f(θ?; ζ)∇f(θ?; ζ)>

]
. Analogously, we

define the limiting Gram matrix of the (KW) gradient estimator ĝh,v at θ? as h→ 0 to be Q. The

following lemma proves that the limiting Gram matrix takes the form of Q = E
[
vv>Svv>

]
, and

it quantifies the distance between ĝh,v(θ?; ζ)ĝh,v(θ?; ζ)> and Q, as the spacing parameter h→ 0.

Lemma 3.2. Under Assumptions 1 to 4, we have∥∥∥E[ĝh,v(θ?; ζ)ĝh,v(θ?; ζ)>
]
−Q

∥∥∥ ≤ Ch(1 + h2), Q = E
[
vv>Svv>

]
.

where S = E
[
∇f(θ?; ζ)∇f(θ?; ζ)>

]
is defined in Assumption 2.
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With Lemma 3.2 in place, we state our first main result that characterizes the limiting distri-

bution of the averaged (AKW) iterates defined in (6).

Theorem 3.3. Let Assumptions 1 to 4 hold. Set the step size as ηn = η0n
−α for some constant

η0 > 0 and α ∈
(
1
2 , 1
)
, and the spacing parameter as hn = h0n

−γ for some constant h0 > 0, and

γ ∈
(
1
2 , 1
)
. The averaged (KW) estimator θn satisfies,

√
n
(
θn − θ?

)
=⇒ N

(
0, H−1QH−1

)
, as n→∞, (13)

where H = ∇2F (θ?) is the population Hessian matrix and Q = E
[
vv>Svv>

]
is defined in

Lemma 3.2. Here =⇒ represents the convergence in distribution.

We now compare the asymptotic covariance matrix of θn with that of the (RM) counterpart in

(5) 1. As one can see, the asymptotic covariance matrix of (AKW) estimator θn exhibits a similar

sandwich form as the covariance matrix of (RM), but strictly dominates the latter, regardless of the

choice of random direction vectors {v1,v2, . . . ,vn}. In fact, it is easy to check that

H−1QH−1 −H−1SH−1 = H−1Ev
[
(vv> − Id)S(vv> − Id)

]
H−1 � 0, (14)

which suggests the (AKW) estimator suffers an inevitable loss of efficiency compared to the θ̂
(RM)

.

In Section 3.2, we analyze (AKW) with multiple function-value queries at each iteration. With the

price of additional per-iteration computational complexity, one is able to improve the statistical

efficiency of (AKW) and achieve the optimal asymptotic variance H−1SH−1.

Remark 3.4. To complete the distributional analysis on (KW) iterates, we also provide the asymp-

totic distribution of the n-th iterate θ
(KW)
n of (3) without averaging. Assume the Hessian matrix has

decomposition H = PΛP>, where P is an orthogonal matrix and Λ is a diagonal matrix. Using

the proof in Fabian (1968), we establish the following asymptotic distribution for θ
(KW)
n ,

nα/2(θ(KW)n − θ?) =⇒ N (0,Σ), (15)

where each (k, `)-th entry of the covariance matrix Σ is,

Σk` = η0
(
P>QP

)
kl

(
Λkk + Λ``

)−1
, 1 ≤ k, ` ≤ d.

1Note that the asymptotic covariance H−1SH−1 in (5) is “optimal” in the sense that it matches the asymptotic

covariance for the empirical risk minimizer θ̂
(ERM)

without online computation and gradient information constraint.
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Here η0 > 0 and α ∈ (12 , 1) are specified in the step size ηn = η0n
−α. As α < 1, the n-th iterate

θ
(KW)
n without averaging converges at a slower rate n−α/2 than that of (AKW) in Theorem 3.3.

3.1 Examples: choices of direction distribution

By Theorem 3.3, the asymptotic covariance matrix of (AKW) estimator, H−1QH−1, depends on

the distribution of search direction Pv via Q = E[vv>Svv>]. In this section, we compare the

asymptotic covariance matrices of the (AKW) estimator when the random directions {vi}ni=1 are

sampled from different Pv’s. Several popular choices of Pv are listed as follows,

(G) Gaussian: v ∼ N (0, I).

(S) Spherical: v is sampled from the uniform distribution on the sphere ‖v‖2 = d.

(I) Uniform in the canonical basis: v is sampled from
{√

de1,
√
de2, . . . ,

√
ded
}

with equal prob-

ability, where {e1, e2, . . . , ed} is the canonical basis of Rd.

It is easy to verify that the above three classical choices of Pv satisfy Assumption 4, among

which (G) and (S) are continuous distributions, while (I) is a discrete distribution. In particular,

(I) is a discrete uniform distribution with equal probability among the d vectors of the standard

basis of Euclidean space Rn, which can be generalized in the following two forms.

(U) Uniform in an arbitrary orthonormal basis U : vi is sampled uniformly from
{√

du1,
√
du2,

. . . ,
√
dud

}
, where {u1,u2, . . . ,ud} is an arbitrary orthonormal basis of Rd, i.e., the matrix

U = (u1,u2, . . . ,ud) is a d× d orthonormal matrix such that UU> = U>U = I.

(P) Non-uniform in the canonical basis with probability (p1, p2, . . . , pd): v =
√

1/pk ek with

probability pk > 0, for k ∈ [d] and
∑d

k=1 pk = 1.

The following proposition provides expressions of the matrix Q for the above five choices of Pv.

Proposition 3.5. Under the assumptions in Theorem 3.3, for above examples of Pv, we have

(G) Gaussian: Q(G) = (2S + tr(S)Id).

13



(S) Spherical: Q(S) = d
d+2 (2S + tr(S)Id).

(I) Uniform in the canonical basis: Q(I) = ddiag(S).

(U) Uniform in an arbitrary orthonormal basis U : Q(U) = dUdiag(U>SU)U>.

(P) Non-uniform in a natural coordinate basis: Q(P) = diag(S11/p1, S22/p2, . . . , Sdd/pd).

From Proposition 3.5, one can see that any of the above choices of Pv leads to a Q(·) that strictly

dominates S. Take S = Id as an example, we have Q(G) = (d+ 2)Id and Q(S) = Q(I) = Q(U) = dId

and Q(P) = diag(p−11 , p−12 , . . . , p−1d ) � Id where p1 + p2 + · · · + pd = 1. Several additional findings

and implications of Proposition 3.5 are discussed in Section A.3 of the supplementary material.

To briefly mention a few, the Gaussian direction (G) is always inferior to the spherical direction

(S). Among the rest of the choices, there is no domination relationship, and different optimality

criterion in the experimental design leads to different optimal choices of Pv.

3.2 Multi-query extension and statistical efficiency

We now consider the (AKW) estimator using (m+ 1) function queries θ
(m)
n in (11),

θ
(m)
n =

1

n

n∑
i=1

θ
(m)
i , where θ

(m)
i = θ

(m)
i−1 − ηig

(m)
n (θi−1; ζi) = θ

(m)
i−1 −

ηi
m

m∑
j=1

ĝ
hi,v

(j)
i

(θi−1; ζi).

Here we first consider using the same sampling distribution across m queries and n iterations. In

other words, v
(j)
i is sampled i.i.d. from Pv for i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Analogous to

Theorem 3.3, we present the asymptotic distribution of the multi-query (AKW),

Theorem 3.6. Under the assumptions in Theorem 3.3, the (m+ 1)-query (AKW) estimator has the

following asymptotic distribution, as n→∞,

√
n
(
θ
(m)
n − θ?

)
=⇒ N

(
0, H−1QmH

−1) , where Qm =
1

m
Q+

m− 1

m
S.

Theorem 3.6 illustrates a trade-off effect between the statistical efficiency and computational

efficiency. When m = 1 and only two queries of function evaluations are available, Theorem 3.6

reduces to Theorem 3.3, and Qm = Q. Conversely, as m → ∞, we have Qm → S. Therefore, the

asymptotic covariance of (m + 1)-query (AKW) estimator θ
(m)
n approaches the optimal covariance
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H−1SH−1 as m approaches infinite. Nevertheless, the algorithm requires m function-value queries

at each iteration, which significantly increases the computation complexity.

For a finite m, a slight revision of the sampling scheme of the direction vectors {v(j)i }j=1,2,...,m

provides a remedy to achieve a smaller and indeed optimal asymptotic covariance matrix. Par-

ticularly at the i-th iteration, one may sample m direction vectors {v(j)i }j=1,2,...,m from a discrete

distribution (such as (I) and (U)) without replacement. In such settings, the direction vectors{
v
(1)
i ,v

(2)
i , . . . ,v

(m)
i

}
are no longer independent but they have the same marginal distribution.

The asymptotic distribution of the multi-query (KW) algorithm sampling without replacement is

provided in the following theorem of its asymptotic distribution.

Theorem 3.7. Under the assumptions in Theorem 3.3, and the direction vectors in all iterations{
Ṽi
}n
i=1

are i.i.d. from Pv such that Ṽi =
(
v
(1)
i ,v

(2)
i , . . . ,v

(m)
i

)
follows discrete sampling scheme

in (I) and (U) WithOut Replacement (WOR), the (m + 1)-query (AKW) estimator, referred to as

θ
(m,WOR)
n , has the following asymptotic distribution, as n→∞,

√
n
(
θ
(m,WOR)
n − θ?

)
=⇒ N

(
0, H−1Q(WOR)

m H−1
)
, where Q(WOR)

m =
(d−m)

m(d− 1)
Q+

d(m− 1)

m(d− 1)
S.

By comparing the asymptotic covariance matrices in Theorems 3.6 and 3.7, Q
(WOR)
m for sampling

without replacement case is strictly smaller than Qm in Theorems 3.6 when we consider multi-

query evaluation (m ≥ 2). Moreover, when m = d, it is easy to see that Q
(WOR)
m = S. Therefore,

the (d + 1)-query (AKW) estimator θ
(m,WOR)
n achieves the same limiting covariance as that of the

averaged (RM) estimator. Furthermore, when the model is well-specified, the limiting covariance

matrix H−1SH−1 = H−1 achieves the Cramér-Rao lower bound. This result indicates that the

(d+ 1)-query (AKW) estimator θn is asymptotically efficient (van der Vaart, 2000).

4 Online Statistical Inference

In the previous section, we provide the asymptotic distribution for the (AKW) estimator. For the

purpose of conducting statistical inference of θ?, we need a consistent estimator of the limiting

covariance H−1QH−1 in (13). A direct way is to construct a pair of consistent estimators Ĥ

and Q̂ of H and Q, respectively, and estimate the asymptotic covariance by the plug-in estimator
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Ĥ−1Q̂Ĥ−1. Offline construction of those estimators is generally straightforward. However, as the

(KW) scheme typically applies to sequential data, it is ideal to estimate the asymptotic covariance in

an online fashion without storing the data. Therefore, one cannot simply replace the true parameter

θ? by its estimate θn in Q and H in an online setting, since we can no longer access the data stream

{ζi}ni=1 after the estimator θn is obtained. To address this challenge, we first propose the following

finite-difference Hessian estimator at each iteration n:

G̃n =

d∑
k=1

d∑
`=1

G̃n,kleke
>
` =

1

h2n

d∑
k=1

d∑
`=1

[∆hn,ekf(θn−1 + hne`; ζn)−∆hn,ekf(θn−1; ζn)] eke
>
` , (16)

This construction can be viewed as a multi-query (with d2 + 1 queries of function values at each

iteration) (KW) scheme with the (I) choice of the random directions. Other choices of the search

directions can be used as well, and discussions are provided in Section B.1 of the supplementary

material. Each additional function-value query beyond the first one provides an estimate G̃n,kl for

the (k, l)-th entry of the matrix G̃n. To reduce the computational cost in G̃n, at each iteration, the

algorithm may compute a random subset of entries of G̃n and partially inhere the remaining entries

from the previous estimator G̃n−1. For example, each entry G̃n,k` is updated with probability

p ∈ (0, 1]. The procedure thus requires O(pd2) function-value queries at each step. If we set

p = O(1/d2), then the query complexity is reduced to O(1) per step. Since the construction of (16)

does not guarantee symmetry, an additional symmetrization step needs to be conducted, as

H̃n =
1

n

n∑
i=1

G̃i + G̃>i
2

. (17)

The next lemma quantifies the estimation error of the Hessian estimator H̃n in (17) and the

proof is provided in Section B of the supplementary material.

Lemma 4.1. Under the assumptions in Theorem 3.3, we have

E‖H̃n −H‖2 ≤ C1n
−α + C2p

−1n−1. (18)

From Lemma 4.1, as n → ∞, the error rate is dominated by the C1n
−α term, where α is the

parameter of the decaying step sizes.
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Remark 4.2. In construction of the estimator of the limiting covariance matrix H−1QH−1, it is

necessary to avoid the possible singularity of H̃n. A common practice is to adopt a thresholding

version of H̃n in (17). Let U Λ̃nU
> be the eigenvalue decomposition of H̃n, and define

Ĥn = U Λ̂nU
>, Λ̂n,kk = max

{
κ1, Λ̃n,kk

}
, k = 1, 2, . . . , d, (19)

for any positive constant κ1 < λ where λ is defined in Assumption 1. It is guaranteed by construction

that Ĥn is strictly positive definite and thus invertible.

On the other hand, the estimator of Gram matrix Q can be naturally constructed as

Q̂n :=
1

n

n∑
i=1

ĝhi,vi(θi−1; ζi) ĝhi,vi(θi−1; ζi)
>, (20)

where ĝhi,vi(θi−1; ζi) is the (KW) update in the i-th iteration obtained by (10). As both Ĥn in (19)

and Q̂n in (20) can be constructed sequentially without storing historical data2, the final plug-in

estimator Ĥ−1n Q̂nĤ
−1
n can also be constructed in an online fashion. Based on Lemma 4.1, we obtain

the following consistency result of the covariance matrix estimator Ĥ−1n Q̂nĤ
−1
n .

Theorem 4.3. Assume Assumptions 1 to 4 hold for δ = 2. Set the step size as ηn = η0n
−α for

some constant η0 > 0 and α ∈
(
1
2 , 1
)
, and the spacing parameter as hn = h0n

−γ for some constant

h0 > 0, and γ ∈
(
1
2 , 1
)
. We have

E
∥∥∥Ĥ−1n Q̂nĤ

−1
n −H−1QH−1

∥∥∥ ≤ Cn−α/2.
We defer the technical proof to Section B of the supplementary material. Theorem 4.3 estab-

lishes the consistency and the rate of the convergence of our proposed covariance matrix estimator

Ĥ−1n Q̂nĤ
−1
n . Given Theorems 3.3 and 4.3, a confidence interval of the projected true parameter

w>θ? for any w ∈ Rd can be constructed via a projection of θn and Ĥ−1n Q̂nĤ
−1
n onto w. Specif-

ically, for a pre-specified confidence level q and the corresponding z-score zq/2, we can obtain an

asymptotic exact confidence interval as n→∞,

P
{
w>θ? ∈

[
w>θn −

zq/2√
n

√
w>Ĥ−1n Q̂nĤ

−1
n w, w>θn +

zq/2√
n

√
w>Ĥ−1n Q̂nĤ

−1
n w

]}
→ 1− q.

2The sequence Q̂n := 1
n

∑n
i=1 Qi with Qi = ĝhi,vi(θi−1; ζi) ĝhi,vi(θi−1; ζi)

> can be constructed only with one-pass

over the sequential data. In particular, we could compute Q̂n sequentially as Q̂n = 1
n

((n− 1)Q̂n−1 + Qi).
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4.1 Online inference without additional function-value queries

Despite the simplicity of the plug-in approach, the proposed estimator Ĥ−1n Q̂nĤ
−1
n incurs additional

computational and storage cost as it requires additional function-value queries for constructing Ĥn.

It raises a natural question: is it possible to conduct inference only based on (KW) iterates {θi}i=1,2,...

without additional function-value queries?

In this section, we provide an affirmative answer to this question, and propose an alternative

online statistical inference procedure using the intermediate (KW) iterates only, without requiring

any additional function-value query. Intuitively, the (AKW) estimator in (6) is constructed as the

average of all intermediate (KW) iterates {θi}ni=1. If all iterates were independent and identically

distributed, the asymptotic covariance could have been directly estimated by the sample covariance

matrix of the iterates 1
n

∑n
i=1(θi − θ)(θi − θ)>. Unfortunately, the (KW) iterates are far from

independent and indeed highly correlated. Nevertheless, the autocorrelation structure of the iterates

can be carefully analyzed and utilized to construct the estimator of H−1QH−1.

In this paper, we adopt an alternative approach to take more advantage of the autocorrelation

structure by leveraging the techniques from robust testing literature (Abadir and Paruolo, 1997;

Kiefer et al., 2000; Lee et al., 2022). Such an estimator is often referred to as the Fixed Bandwidth

Heteroskedasticity and Autocorrelation Robust estimator (fixed-b HAR) in the econometrics liter-

ature. The fixed-b HAR estimator is able to overcome the series correlation and heteroskedasticity

in the error terms for the OLS estimates of the linear regression (e.g. Kiefer et al. (2000)). For

the (RM) scheme, Lee et al. (2022) utilized and generalized this technique to construct an online

statistical inference procedure, and refer to this method as the random scaling method.

In particular, we present the following theorem based on a functional extension of the distribu-

tional analysis of the intermediate (KW) iterates {θt} as a stochastic process.

Theorem 4.4. For any w ∈ Rd, under the assumptions in Theorem 3.3, we have

√
n
w>(θn − θ?)√

w>Vnw
=⇒ W1√∫ 1

0 (Wr − rW1)
2 dr

, (21)

where Vn = 1
n2

∑n
i=1 i

2(θi − θn)(θi − θn)>, and θi = 1
i

∑i
`=1 θ` is the average of iterates up to the

i-th iteration, and {Wt}t≥0 is the standard one-dimensional Brownian motion.
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Quantile 90% 95% 97.5% 99%

Abadir and Paruolo (1997) Table 1 3.875 5.323 6.747 8.613

Table 1: Cumulative probability table of the limiting distribution.

As an important special case, when w = ek for k = 1, 2, . . . , d, we have the convergence in each

coordinate to the following pivotal limiting distribution,

√
n(θn,k − θ?k)√

Vn,kk
=⇒ W1√∫ 1

0 (Wr − rW1)
2 dr

, (22)

For the asymptotic distribution defined on the right hand side in (22), we repeat the quantiles of the

distribution published by Abadir and Paruolo (1997) in Table 13. Combining the asymptotic results

in (22) and Table 1, we can construct coordinate-wise confidence intervals for the true parameter

θ?. In addition, as

Vn =
1

n2

n∑
i=1

i2(θi − θn)(θi − θn)> =
1

n2

n∑
i=1

i2θiθ
>
i −

2

n2
θn

n∑
i=1

i2θ
>
i +

1

n2

n∑
i=1

i2θnθ
>
n (23)

can be constructed in an online fashion via the iterative updates of the matrix
∑n

i=1 i
2θiθ

>
i and

the vector
∑n

i=1 i
2θi, the proposed online inference procedure only requires one pass over the data.

5 Numerical Experiments

In this numerical section, we first investigate the empirical performance of the proposed inference

procedures and their corresponding coverage rates. We consider linear regression and logistic regres-

sion models (Examples 2.1–2.2) where {xi, yi}ni=1 is an i.i.d. sample with the covariate x ∼ N (0,Σ)

and the response y ∈ R. The true model parameter θ? ∈ Rd is selected uniformly from the unit

sphere before the experiments. For both models, we consider two different structures of the covari-

ance matrices Σ: identity matrix Id and equicorrelation covariance matrix (Equicorr in the tables),

i.e., Σk` = 0.2 for all k 6= ` and Σkk = 1. The parameter α in the step size is specified to α = 0.501.

The variance of noise ε in the linear regression model (Example 2.1) is set to σ2 = 0.2.

3Since the distribution on the right hand side of (21) is symmetric, we only provide one-side quantiles in the table.
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d Σ Estimation error Average coverage rate Average length

Parameter Plug-in Cov. Plug-in Fixed-b Oracle Plug-in Fixed-b Oracle

Linear regression

0.0031 0.0384 0.9448 0.9464 0.9436 1.7555 2.1915 1.7533
Identity

(0.0010) (0.0106) (0.1035) (0.1174) (0.1040) (0.0082) (0.4184) -

0.0035 0.0342 0.9428 0.9488 0.9412 2.0109 2.4895 2.0078
5

Equicorr
(0.0012) (0.0092) (0.1096) (0.1195) (0.1102) (0.0097) (0.5323) -

0.0135 0.1126 0.9319 0.9039 0.9288 3.5337 3.7424 3.5065
Identity

(0.0023) (0.0190) (0.0594) (0.0657) (0.0616) (0.0164) (0.4292) -

0.0172 0.1124 0.9194 0.9014 0.9170 4.3140 4.5582 4.2753
20

Equicorr
(0.0029) (0.0199) (0.0644) (0.0674) (0.0656) (0.0207) (0.5681) -

0.0748 0.5707 0.9309 0.7501 0.9012 8.6675 7.6819 7.8397
Identity

(0.0062) (0.0648) (0.0261) (0.0397) (0.0336) (0.1081) (0.4924) -

0.0921 0.5615 0.9331 0.7435 0.9044 10.7701 9.0193 9.7508
100

Equicorr
(0.0076) (0.0647) (0.0250) (0.0418) (0.0320) (0.1400) (0.6161) -

Logistic regression

0.0265 0.0587 0.9432 0.9360 0.9440 3.1136 3.3775 3.1078
Identity

(0.0115) (0.0434) (0.1219) (0.1685) (0.1148) (0.0936) (0.2074) -

0.0299 0.0697 0.9440 0.9364 0.9464 3.3620 3.8028 3.2580
5

Equicorr
(0.0131) (0.0514) (0.1196) (0.1566) (0.1207) (0.1057) (0.2558) -

0.0728 0.1030 0.9418 0.8956 0.9403 4.8751 5.1763 4.8374
Identity

(0.0124) (0.0250) (0.0532) (0.1156) (0.0540) (0.1973) (0.4362) -

0.0799 0.1213 0.9383 0.8949 0.9369 5.6873 5.7532 5.6356
20

Equicorr
(0.0146) (0.0359) (0.0577) (0.1106) (0.0561) (0.1715) (0.4064) -

0.2440 0.5236 0.9673 0.7022 0.9082 12.0661 8.7892 10.3175
Identity

(0.0211) (0.1646) (0.0193) (0.0838) (0.0295) (0.4642) (0.6000) -

0.2867 0.7685 0.9608 0.6950 0.9041 12.7375 9.4884 10.4868
100

Equicorr
(0.0253) (0.2933) (0.0185) (0.0728) (0.0314) (0.6870) (0.6170) -

Table 2: Estimation errors, averaged coverage rates, and average lengths of the proposed algorithm

with search direction (I) and two function queries (m = 1). Sample size n = 105. Corresponding

standard errors are reported in the brackets. We compare the plug-in covariance estimator (plug-in)

based inference (17) and fixed-b HAR (fixed-b) based inference (22).
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(a) (b)

(c) (d)

Figure 3: Convergence of the parameter estimation error ‖θn − θ?‖ and coverage rates v.s. the

sample size n when d = 20 and the population design matrix Σ = I. Plots (a) to (b) show the

cases of linear regression and plots (c) to (d) show the cases of logistic regression. Dashed lines in

plots (b) and (d) correspond to the nominal 95% coverage.
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5.1 Estimation errors of (AKW) and the performance of inference procedures

We set the sample size n = 105 and the parameter dimension d = 5, 20, 100. We first report the

performance of (AKW) with the search direction uniformly sampled from the natural basis, referred

to as (I) in Section 3.1. In Table 2, we present the estimation error for the parameter θ? in the

Euclidean norm and the relative error of the plug-in covariance estimator in the spectral norm (see

the first two columns), with 100 Monte-Carlo simulations,

‖θn − θ?‖
‖θ?‖

,
‖Ĥ−1n Q̂nĤ

−1
n −H−1QH−1‖

‖H−1QH−1‖
. (24)

Next, we set the nominal coverage probability as 95% and we project θ ∈ Rd onto w =

(1, 1, . . . , 1)>/
√
d to construct confidence intervals. In particular, we report the performance of the

confidence interval with the average coverage rate and the average length of the intervals for (1) the

plug-in covariance matrix estimator4 (16) and (2) the fixed-b HAR procedure in (23). As an oracle

benchmark, we also report the length of the confidence interval with respect to the true covariance

matrix H−1QH−1 of the plug-in approach and the corresponding coverage rate. As shown from

Table 2, the coverage rate of the plug-in covariance estimator and the oracle coverage rates are

very close to the desired 95% coverage, while the fixed-b HAR approach is comparable in small

dimension d = 5, 20 but has lower coverage rates for the large dimension d = 100. The average

lengths of both methods are comparable to the lengths derived by the true limiting covariance.

Then, we fix d = 20 and the identity design matrix Σ = I . We present in Figure 3 the

parameter estimation error ‖θn−θ?‖ as the sample size n grows (see subplots (a) and (c) in Figure

3, for linear and logistic regression, respectively). In subplots (b) and (d) of Figure 3, we show

the coverage rates for the plug-in and fixed-b HAR approaches as the sample size n increases. As

one can see, coverage rates of the plug-in approach almost match the oracle case using the true

asymptotic covariance matrix H−1QH−1. For the linear regression case, the plug-in and fixed-b

HAR approaches are comparable. For the logistic regression case, the coverage rate of the fixed-b

HAR inference procedure is slightly inferior than that of the plug-in method. On the other hand,

the fixed-b HAR approach does not require additional function queries for the explicit estimation

4Here we use updating probability p = 1 for the plug-in estimation. In other words, d2 + 1 queries of function

values are obtained at each iteration. In Section 5.2 below, we extend the comparison for different p.
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of the Hessian matrix. Additional simulation results for the equicorrelation design are relegated to

Figure C.1 in the supplementary material.

Σ Estimator Comp. Estimation error Average coverage rate Average length

time Hessian Cov. Estimator Oracle Estimator Oracle

Identity

0.1780 0.3179 0.8965 0.9288 3.6570 3.5065
Plug-in p = 1/400 4.74s

(0.0115) (0.0423) (0.0696) (0.0616) (0.0195) -

0.0393 0.1503 0.9244 0.9288 3.5511 3.5065
Plug-in p = 1/20 25.42s

(0.0043) (0.0282) (0.0665) (0.0616) (0.0169) -

0.0271 0.1126 0.9319 0.9288 3.5337 3.5065
Plug-in p = 1 510.53s

(0.0021) (0.0190) (0.0594) (0.0616) (0.0164) -

- - 0.9039 0.9288 3.7424 3.5065
Fixed-b 2.82s

- - (0.0657) (0.0616) (0.4292) -

Equicorr

0.0381 0.4211 0.8815 0.9170 4.4547 4.2753
Plug-in p = 1/400 4.78s

(0.0043) (0.0421) (0.0753) (0.0656) (0.0304) -

0.0117 0.1540 0.9122 0.9170 4.3489 4.2753
Plug-in p = 1/20 25.60s

(0.0025) (0.0271) (0.0691) (0.0656) (0.0293) -

0.0082 0.1124 0.9194 0.9170 4.3140 4.2753
Plug-in p = 1 512.07s

(0.0018) (0.0199) (0.0644) (0.0656) (0.0207) -

- - 0.9014 0.9170 4.5582 4.2753
Fixed-b 2.85s

- - (0.0674) (0.0656) (0.5681) -

Table 4: Computation time, estimation errors, averaged coverage rates, and average lengths of

the proposed algorithm with search direction (I) and two function queries (m = 1). Sample size

n = 105, dimension d = 20 under the linear regression model. Corresponding standard errors are

reported in the brackets. We compare the plug-in covariance estimator (plug-in) based inference

(19) using p = 1, 1/20, 1/400 and fixed-b HAR (fixed-b) based inference (23).

5.2 Comparison of the inference procedures

In this subsection, we provide detailed comparisons of different inference procedures. Specifically,

we fix dimension d = 20, and compare the performance for the plug-in and fixed-b HAR schemes.
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Σ Estimator Comp. Estimation error Average coverage rate Average length

time Hessian Cov. Estimator Oracle Estimator Oracle

Identity

0.1812 0.3293 0.9039 0.9403 5.0715 4.8374
Plug-in p = 1/400 5.70s

(0.0281) (0.0792) (0.0501) (0.0540) (0.2071) -

0.0737 0.1636 0.9330 0.9403 4.9599 4.8374
Plug-in p = 1/20 32.32s

(0.0114) (0.0393) (0.0593) (0.0540) (0.1833) -

0.0597 0.1030 0.9418 0.9403 4.8751 4.8374
Plug-in p = 1 643.86s

(0.0093) (0.0250) (0.0532) (0.0540) (0.1973) -

- - 0.8956 0.9403 5.1763 4.8374
Fixed-b 3.13s

- - (0.1156) (0.0540) (0.4362) -

Equicorr

0.0993 0.3620 0.8880 0.9369 5.9456 5.6356
Plug-in p = 1/400 5.75s

(0.0287) (0.0992) (0.0540) (0.0561) (0.1716) -

0.0356 0.1441 0.9288 0.9369 5.7766 5.6356
Plug-in p = 1/20 32.53s

(0.0120) (0.0440) (0.0599) (0.0561) (0.1556) -

0.0240 0.1213 0.9383 0.9369 5.6873 5.6356
Plug-in p = 1 645.56s

(0.0101) (0.0359) (0.0577) (0.0561) (0.1715) -

- - 0.8949 0.9369 5.7532 5.6356
Fixed-b 3.17s

- - (0.1106) (0.0561) (0.4064) -

Table 5: Computation time, estimation errors, averaged coverage rates, and average lengths of

the proposed algorithm with search direction (I) and two function queries (m = 1). Sample size

n = 105, dimension d = 20 under the logistic regression model. Corresponding standard errors are

reported in the brackets. We compare the plug-in covariance estimator (plug-in) based inference

(19) using p = 1, 1/20, 1/400 and fixed-b HAR (fixed-b) based inference (23).

24



For plug-in estimators, at each iteration, we update the Hessian estimator Ĥn in (19) using (16)

with probability p chosen from 1, d−1, d−2. The fixed-b scheme is updated by (23). We report

the computation time, the estimation error of the Hessian matrix, and the average coverage rate

and length of these candidates based on 100 replications. The computation time is recorded in a

simulation environment running Python 3.8 with a single 10-core Apple M1 Max chip.

The simulation for linear regression and logistic regression is given below in Tables 4–5, respec-

tively. As can be referred from the two tables, the fixed-b HAR approach gives the fastest execution,

due to the fact that no additional function queries are required for Hessian matrix computation.

The fixed-b HAR method is even faster than the case of p = d−2 where we update only one entry

(in expectation) for the Hessian matrix in each (KW) step. Among plug-in cases, the performance

of inference improves as p increases, and it achieves a relatively more reliable coverage for p ≥ d−1,

(i.e., at least d entries (in expectation) receive updates for the Hessian estimator per (KW) step),

with a significant cost of the computation time. In practice, we would recommend the fixed-b

HAR method for those computation-sensitive tasks, and the plug-in method with Hessian sampling

probability p ≥ d−1 in less computation-sensitive tasks.

5.3 Choices of the search direction distribution

In this subsection, we compare the results for different directions Pv. We report the results for the

logistic regression model with the identity design matrix Σ = I in Table 6. Table 6 suggests the

(AKW) algorithms with search directions (I), (S), (G) achieve similar performance for parameter

estimation error and average coverage rates, while the average confidence intervals of (G) are gener-

ally larger. The observations in the numerical experiments match our Proposition 3.5. Additional

simulation results of the linear regression model and the equicorrelation design are relegated to

Tables C.2, C.3, C.4 in the supplementary material.

5.4 Multi-query (AKW) estimator

We further conduct experiments for the (KW) algorithm with multiple function-value queries (m >

1) and compare the performance of m = 10, 100 using different search directions with sampling
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d Pv Estimation error Average coverage rate Average length

Parameter Plug-in Cov. Plug-in Oracle Plug-in Oracle

0.0265 0.0587 0.9432 0.9440 3.1136 3.1078
(I)

(0.0115) (0.0434) (0.1219) (0.1148) (0.8648) -

0.0264 0.0599 0.9396 0.9376 3.0639 3.0625
(S)

(0.0124) (0.0453) (0.1276) (0.1250) (0.8211) -

0.0312 0.0718 0.9412 0.9420 3.6304 3.6237

5

(G)
(0.0139) (0.0498) (0.1193) (0.1176) (0.9770) -

0.0728 0.1030 0.9418 0.9403 4.8751 4.8374
(I)

(0.0124) (0.0250) (0.0532) (0.0540) (0.6441) -

0.0711 0.1017 0.9438 0.9419 4.8414 4.8156
(S)

(0.0116) (0.0246) (0.0523) (0.0524) (0.6322) -

0.0749 0.1054 0.9427 0.9423 5.0873 5.0507

20

(G)
(0.0121) (0.0248) (0.0563) (0.0523) (0.6654) -

0.2440 0.5236 0.9673 0.9082 12.0661 10.3175
(I)

(0.0211) (0.1646) (0.0193) (0.0295) (1.0106) -

0.2353 0.5122 0.9605 0.9145 13.1366 11.1788
(S)

(0.0205) (0.1530) (0.0201) (0.0358) (1.0891) -

0.2357 0.5147 0.9614 0.9161 13.2836 11.2901

100

(G)
(0.0202) (0.1531) (0.0205) (0.0380) (1.0929) -

Table 6: Comparison among different direction distributions Pv (Detailed specification of

(I),(S),(G) can be referred to Section 3.1). We consider the logistic regression model with design

matrix Σ = I, and the (AKW) estimators are computed based on the case of two function queries

(m = 1). Corresponding standard errors are reported in the brackets.
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m; Σ Pv Estimation error Average coverage rate Average length

Parameter Plug-in Cov. Plug-in Oracle Plug-in Oracle

0.0916 0.1972 0.9547 0.9342 3.7013 3.4794
(I+WOR)

(0.0103) (0.1053) (0.0225) (0.0330) (0.2970) -

0.0947 0.2004 0.9551 0.9353 3.8800 3.6383
(I+WR)

(0.0106) (0.1025) (0.0215) (0.0310) (0.3053) -

0.0958 0.2134 0.9552 0.9320 3.8893 3.6352

10; Identity

(S)
(0.0118) (0.1172) (0.0219) (0.0368) (0.3054) -

0.1184 0.2581 0.9404 0.9126 3.6432 3.3700
(I+WOR)

(0.0122) (0.1278) (0.0252) (0.0382) (0.2240) -

0.1235 0.2828 0.9431 0.9125 3.8352 3.5234
(I+WR)

(0.0145) (0.1573) (0.0266) (0.0437) (0.2498) -

0.1224 0.2753 0.9435 0.9135 3.8225 3.5165

10; Equicorr

(S)
(0.0144) (0.1501) (0.0259) (0.0422) (0.2614) -

0.0261 0.0531 0.9455 0.9438 0.8978 0.8938
(I+WOR)

(0.0022) (0.0135) (0.0297) (0.0305) (0.0290) -

0.0333 0.0568 0.9455 0.9441 1.4037 1.3948
(I+WR)

(0.0030) (0.0196) (0.0253) (0.0262) (0.0803) -

0.0334 0.0556 0.9458 0.9439 1.4034 1.3941

100; Identity

(S)
(0.0028) (0.0199) (0.0231) (0.0247) (0.0816) -

0.0328 0.0664 0.9490 0.9441 0.9056 0.8971
(I+WOR)

(0.0035) (0.0199) (0.0339) (0.0356) (0.0493) -

0.0453 0.0823 0.9494 0.9444 1.4183 1.3946
(I+WR)

(0.0046) (0.0322) (0.0240) (0.0270) (0.0766) -

0.0451 0.0821 0.9497 0.9449 1.4157 1.3930

100; Equicorr

(S)
(0.0048) (0.0321) (0.0249) (0.0270) (0.0777) -

Table 7: Comparison among different sampling schemes for multi-query algorithms under logistic

regression model with dimension d = 100 and m = 10, 100, respectively (Detailed specification of

(I+WOR),(I+WR),(S) can be referred to Section 3.1). Corresponding standard errors are reported

in the brackets.
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(a) (b)

Figure 8: The parameter estimation error and the relative covariance estimation error (see (24))

for multiple function-value evaluations. The x-axis is the number of function evaluations per step

(i.e., m+ 1). Here, we consider the logistic regression model with n = 105 and d = 100.

schemes (I+WR), (I+WOR), and (S). We note that (I+WR) and (I+WOR) refer to the uniform sampling

from natural basis with and without replacement, respectively; and (S) refers to the uniform

sampling from the sphere. We report the results of the logistic regression model in Table 7 and

relegate the results of the linear regression to Table C.5 in the supplementary material.

Whenm = 10, the (KW) algorithm using all three sampling schemes achieves similar performance

in both estimation and inference. When m = 100, the algorithm with (I+WOR) achieves better

performance than the other two sampling schemes by constructing around 30% shorter confidence

intervals on average while achieving comparable coverage rates.

We further present in Figure 8 the estimation error of the parameters and covariance matrices

when we increase the function-query complexity m. The numerical results matches the magnitudes

of Q with regard to different m in Theorems 3.6–3.7, which could help practitioners choose an

appropriate m to balance the accuracy and computational cost. We report the logistic regression

results with the identity design matrix Σ = I in Figure 8 and relegate the equicorrelation design

and the linear regression results to Figures C.6–C.7 in the supplementary material.
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6 Conclusion and Future Work

In this paper, we investigate the statistical inference problem for the Kiefer-Wolfowitz stochastic

optimization algorithm with random search directions. We show the asymptotic normality for

the (KW)-type estimators and provide consistent estimators of the asymptotic covariance matrix

to facilitate the inference. Our theoretical analysis provides a comprehensive comparison on the

impact of different random search directions, the number of multi-query evaluations, and sampling

schemes. Our findings are validated by numerical experiments.

For future works, our results and estimation methods may be potentially useful to understand

asymptotic behaviors of other gradient-free variants of stochastic optimization algorithms, e.g.

moment-adjusted stochastic gradients (Liang and Su, 2019), stochastic optimization under con-

straints (Duchi and Ruan, 2021), high dimensional stochastic algorithms (Chao and Cheng, 2019;

Shi et al., 2021), and SGD in contextual bandit settings Chen et al. (2021).

References

Abadir, Karim M and Paolo Paruolo (1997). Two mixed normal densities from cointegration

analysis. Econometrica 65 (3), 671–680.

Agarwal, Alekh, Ofer Dekel, and Lin Xiao (2010). Optimal algorithms for online convex optimiza-

tion with multi-point bandit feedback. In Conference on Learning Theory, pp. 28–40.

Agarwal, Alekh, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Alexander Rakhlin (2011).

Stochastic convex optimization with bandit feedback. In Advances in Neural Information Pro-

cessing Systems, pp. 1035–1043.

Blum, Julius R (1954). Multidimensional stochastic approximation methods. The Annals of Math-

ematical Statistics 25 (4), 737–744.

Broadie, Mark, Deniz Cicek, and Assaf Zeevi (2011). General bounds and finite-time improvement

for the kiefer-wolfowitz stochastic approximation algorithm. Operations Research 59 (5), 1211–

1224.

29



Chao, Shih-Kang and Guang Cheng (2019). A generalization of regularized dual averaging and its

dynamics. arXiv preprint arXiv:1909.10072 .

Chen, Hung (1988). Lower rate of convergence for locating a maximum of a function. The Annals

of Statistics, 1330–1334.

Chen, Haoyu, Wenbin Lu, and Rui Song (2021). Statistical inference for online decision making via

stochastic gradient descent. Journal of the American Statistical Association 116 (534), 708–719.

Chen, Han-Fu, Tyrone E Duncan, and Bozenna Pasik-Duncan (1999). A kiefer-wolfowitz algorithm

with randomized differences. IEEE Transactions on Automatic Control 44 (3), 442–453.

Chen, Xi, Jason D Lee, Xin T Tong, and Yichen Zhang (2020). Statistical inference for model

parameters in stochastic gradient descent. The Annals of Statistics 48 (1), 251–273.

Conn, Andrew R, Katya Scheinberg, and Luis N Vicente (2009). Introduction to derivative-free

optimization. Society for Industrial and Applied Mathematics.

Dippon, Jürgen (2003). Accelerated randomized stochastic optimization. The Annals of Statis-

tics 31 (4), 1260–1281.

Duchi, John C, Michael I Jordan, Martin J Wainwright, and Andre Wibisono (2015). Optimal rates

for zero-order convex optimization: The power of two function evaluations. IEEE Transactions

on Information Theory 61 (5), 2788–2806.

Duchi, John C and Feng Ruan (2021). Asymptotic optimality in stochastic optimization. The

Annals of Statistics 49 (1), 21–48.

Fabian, Vaclav (1967). Stochastic approximation of minima with improved asymptotic speed. The

Annals of Mathematical Statistics, 191–200.

Fabian, Vaclav (1968). On asymptotic normality in stochastic approximation. The Annals of

Mathematical Statistics 39 (4), 1327–1332.
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