
Supplementary Material for Online Statistical

Inference for Stochastic Optimization via

Kiefer-Wolfowitz Methods

The supplementary material is organized as follows:

1. Section A is a supplementary material to Section 3. Proofs for the two-query approximation

are presented in Section A.1. We provide relaxed conditions and the corresponding technical

details for the logistic regression and quantile regression in Section A.2. In Section A.3, we

further provide illustrations of the choices of directions Pv introduced in Section 3.1 of the

main text. Proofs for the multi-query extension (Section 3.2) are given in Section A.4.

2. Section B provides technical details and additional discussions for Section 4. Section B.1

includes the proof of theoretical results of online statistical inference procedures. Section B.2

provides results for the (KW) version of stochastic Newton’s method as a bi-product of the

results in Section 4.

3. In Section C, we present additional results of numerical experiments.

Throughout the supplementary material, we will assume, without loss of generality, F (·) achieves

its minimum at θ? = 0 and F (0) = 0. We now introduce some notations as follows,

ξn = ∇F (θn−1)− En−1(
1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn),

γn = En−1
1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn −

1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn,

εn =
1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn −

1

hn
[f(θn−1 + hnvn; ζn)− f(θn−1; ζn)]vn.

A Supplementary Material for Section 3
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A.1 Two-query approximation

Proof of Lemma 2.4

Proof. By definition, Eζ ĝh,v(θ; ζ) = 1
h∆h,vF (θ)v = 1

h [F (θ + hv)− F (θ)]v. For the first inequal-

ity, we have

‖E ĝh,v(θ; ζ)−∇F (θ)‖ =

∥∥∥∥E 1

h
[F (θ + hv)− F (θ)]v −∇F (θ)

∥∥∥∥
=

∥∥∥∥E vv>∇F (θ) +
1

2
hE vv>∇2F (θh,v)v −∇F (θ)

∥∥∥∥
=

1

2
h
∥∥∥E vv>∇2F (θh,v)v

∥∥∥
≤ 1

2
hLfE‖v‖3, (A.1)

where in the third equality we use the Taylor expansion of F (θ), and θh,v comes from the remainder

term of the Taylor expansion.

Proof of Proposition 3.1

Proposition 3.1. Assume Assumptions 1, 2, and 4 hold. Set the step size as ηn = η0n
−α for some

constant η0 > 0 and α ∈
(
1
2 , 1
)

and the spacing parameter as hn = h0n
−γ for some constant h0 > 0,

and γ ∈
(
1
2 , 1
)
. The (KW) iterate θn converges to θ? almost surely. Furthermore, for sufficiently

large n, we have for 0 < δ ≤ 2,

E‖θn − θ?‖2+δ ≤ Cn−α(2+δ)/2.

where the constant C depends on d, λ, Lf , α, γ, η0, h0.

Remark A.1. The parameter dependency in Proposition 3.1 could be given explicitly as follows,

E‖θn − θ∗‖2 ≤ exp
(
CM1η0/(2α− 1) + CM2/(2β − 1)− Cλη0n1−α/(1− α)

)
‖θ0‖2

+M3

(
exp

(
−Cλη0n1−α/(1− α)

)
+
η0n
−α

λ

)
+
M3

M1
exp

(
CM1η0/(2α− 1) + CM2/(2β − 1)− Cλη0n1−α/(1− α)

)
,
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where the constant C above is a universal constant that does not depend on any constant/parameters

in the assumptions. The other terms M1,M2,M3 above are given below,

M1 = C
(
L2
fE‖v‖4 +M

2
2+δE‖v‖4 + L2

f

)
,

M2 = CL2
fE‖v‖3,

M3 = C
(
E‖v‖3 +

(
h2nL

2
fE‖v‖6 +M

2
2+δE‖v‖4(h2n‖v‖2 + 1)

))
.

We will prove both Proposition 3.1 and Remark A.1 below.

Proof. We first give some bounds on ξn,γn, εn. By definition, En−1γn = En−1εn = 0. From (A.1),

‖ξn‖ ≤
1

2
hnLfE‖v‖3. (A.2)

We can bound γn by the following

E‖γn‖2 ≤ E
∥∥∥∥ 1

hn
[F (θn−1 + hnvn)− F (θn−1)]vn

∥∥∥∥2
≤ E‖〈∇F (θn−1),vn〉vn‖2 +

1

4
h2nL

2
fE‖v‖6

≤ L2
fE‖v‖4E‖θn−1‖2 +

1

4
h2nL

2
fE‖v‖6. (A.3)

We also have the following fact for ε.

En−1
[
‖εn‖2|vn

]
= En−1

[∥∥∥∥ 1

hn

∫ hn

0
〈∇F (θn−1 + svn)−∇f(θn−1 + svn; ζn),vn〉vn ds

∥∥∥∥2 ∣∣∣∣vn
]

≤ ‖vn‖4En−1
[

1

hn

∫ hn

0
‖∇F (θn−1 + svn)−∇f(θn−1 + svn; ζn)‖2 ds

∣∣vn]
≤ M

2
2+δ ‖vn‖4

1

hn

∫ hn

0
(‖θn−1 + svn‖2 + 1) ds

≤ M
2

2+δ ‖vn‖4(‖θn−1‖2 + h2n‖vn‖2 + 1), (A.4)

where in the second inequality, we use Assumption 2.

Now decompose the update step as follows,

θn = θn−1 − ηn
1

hn
[f(θn−1 + hnun; ζn)− f(θn−1; ζn)]

= θn−1 − ηn∇F (θn−1) + ηn(ξn + γn + εn).
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Therefore, we can derive that,

‖θn‖2 ≤‖θn−1‖2 − 2ηn〈∇F (θn−1),θn−1〉+ 2ηn〈ξn + γn + εn,θn−1〉

+ η2n‖ξn + γn + εn −∇F (θn−1)‖2. (A.5)

For the first part in the RHS of the above inequality, we have,

〈∇F (θn−1),θn−1〉 ≥ F (θn−1) +
λ

2
‖θn−1‖2 ≥ λ‖θn−1‖2,

with strong convexity property. Moreover,

|ηnEn−1〈ξn + γn + εn,θn−1〉| = ηn |En−1〈ξn,θn−1〉|

≤ 1

2
ηnhnLf‖θn−1‖E‖v‖3

≤ CL2
fE‖v‖3h2n‖θn−1‖2 + CE‖v‖3η2n, (A.6)

En−1‖ξn + γn + εn −∇F (θn−1)‖2 ≤ 4‖ξn‖2 + 4‖γn‖2 + 4‖εn‖2 + 4‖∇F (θn−1)‖2

≤ h2nL2
fE(‖v‖3)2 + 4L2

fE‖v‖4‖θn−1‖2 + h2nL
2
fE‖v‖6

+ 4M
2

2+δE‖vn‖4(‖θn−1‖2 + h2n‖vn‖2 + 1) + 4L2
f‖θn−1‖2

:= M1‖θn−1‖2 +M2 (A.7)

where we use Cauchy-Schwarz inequality in (A.6), (A.7) and M1 = C
(
L2
fE‖v‖4 + M

2
2+δE‖v‖4 +

L2
f

)
,M2 = C

(
h2nL

2
fE‖v‖6 +M

2
2+δE‖v‖4(h2n‖v‖2 + 1)

)
. So combining all inequalities, we have

En−1‖θn‖2 ≤
[
1− 2ληn +M1η

2
n +M3h

2
n

]
‖θn−1‖2 +M4η

2
n, (A.8)

where M3,M4 is defined by M3 = CL2
fE‖v‖3, M4 = C(E‖v‖3 + M2). Following the proof of

Theorem 1 of Moulines and Bach (2011), we can apply the recursion and get

E‖θn‖2 ≤
n∏
k=1

[
1− 2ληk +M1η

2
k + CM3h

2
k

]
‖θ0‖2 +M4

n∑
k=1

n∏
i=k+1

[
1− 2ληi +M1η

2
k +M3h

2
k

]
η2k.

We can then bound the first term on the RHS,

n∏
k=1

[
1− 2ληk +M1η

2
k +M3h

2
k

]
≤ exp

(
−2λ

n∑
k=1

ηk

)
exp

(
M1

n∑
k=1

η2k

)
exp

(
M3

n∑
k=1

h2k

)
,
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as well as the second term on the RHS

n∑
k=1

n∏
i=k+1

[
1− 2ληi +M1η

2
k +M3h

2
k

]
η2k

≤ exp

(
−λ

n∑
k=m+1

ηk

)
n∑
k=1

η2k +
ηm
λ

+
1

M1
exp

(
M1

n0∑
k=1

η2k

)
exp

(
M3

n0∑
k=1

h2k

)
exp

(
−λ

n∑
k=1

ηk

)
,

where we denote by n0 = inf{k ∈ N, 1− 2ληk +M1η
2
k +M3h

2
k ≤ 1− ληk} and m is any integer in

{1, . . . , n}. Choose m = n/2 and bound n0 by n. Notice that
∑n

k=1 η
2
k converge. So we can get

E‖θn‖2 ≤ exp
(
CM1η0/(2α− 1) + CM3/(2β − 1)− Cλη0n1−α/(1− α)

)
‖θ0‖2

+M4

(
exp

(
−Cλη0n1−α/(1− α)

)
+
η0n
−α

λ

)
+
M4

M1
exp

(
CM1η0/(2α− 1) + CM3/(2β − 1)− Cλη0n1−α/(1− α)

)
.

Only the term M4η0n
−α/λ decreases at the order of O(n−α) while all the other terms decrease

much faster.

Notice that up to this point, all C’s are universal constants which do not depend on any

parameters in the assumptions. From now on, we will absorb all parameters (other than n) into C

to make the asymptotic analysis more clear.

By martingale convergence theorem, ‖θn‖ converges almost surely. Because its second moment

converges to 0, it must converge to 0 almost surely.

We now show that,

E‖θn − θ?‖2+δ ≤ Cn−α(2+δ)/2.

By same arguments as in (A.2), (A.3), (A.4), we can get ‖ξn‖2+δ ≤ Ch2+δn , En−1‖γn‖2+δ ≤

‖θn−1‖2+δ + Ch2+δn , En−1
[
‖εn‖2+δ

]
≤ C(‖θn−1‖2+δ + 1).

By similar arguments as in Lemma B.3, there exists constants C such that for any a, b,

‖a+ b‖2+δ ≤ ‖a‖2+δ + (2 + δ)〈a, b〉‖a‖δ + C‖a‖δ‖b‖2 + C‖b‖2+δ.
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So we have the bound

En−1‖θn‖2+δ ≤ ‖θn−1‖2+δ + ηn(2 + δ)En−1〈θn−1,−∇F (θn−1) + ξn + γn + εn〉‖θn−1‖δ

+ Cη2n‖θn−1‖δEn−1‖ − ∇F (θn−1) + ξn + γn + εn‖2

+ Cη2+δn En−1‖ − ∇F (θn−1) + ξn + γn + εn‖2+δ

≤ (1− (2 + δ)ληn)‖θn−1‖2+δ + Cηnhn‖θn−1‖1+δ

+ Cη2n(‖θn−1‖2 + 1)‖θn−1‖δ + Cη2+δn (‖θn−1‖2+δ + 1).

If 0 < δ ≤ 1, by previous bound E‖θn‖2 ≤ Cn−α, we can get E‖θn‖1+δ ≤ Cn−α(1+δ)/2 and

E‖θn‖δ ≤ Cn−αδ/2 by Hölder’s inequality. So we can further get

E‖θn‖2+δ ≤ (1− Cn−α + Cn−2α)E‖θn−1‖2+δ + Cn−(2+δ)α/2,

which implies E‖θn‖2+δ ≤ Cn−(2+δ)α/2 as in the above proof after (A.8).

Now the case for 0 < δ ≤ 1 is proved. We can then use induction. If E‖θn‖2+δ ≤ Cn−(2+δ)α/2

for all δ ≤ n, then we can use the same method to prove the same inequality holds for δ ∈ (n, n+1].

Thus the inequality holds for all δ.

Proof of Lemma 3.2

Proof. By Assumption 2, we know that

E‖∇f(θ; ζ)−∇F (θ)‖2+δ ≤M(‖θ‖2+δ + d2+δ).

Therefore, the following holds some constant C > 0,

E‖∇f(θ; ζ)−∇F (θ)‖2 ≤ C(‖θ‖2 + d2). (A.9)

In particular,

E‖∇f(0; ζ)−∇F (0)‖2 ≤ C. (A.10)

From Assumption 3, we can get the following estimate for the Hessian matrix ∇2f(θ; ζ),

E‖∇2f(θ; ζ)‖2 ≤ 2E‖∇2f(0; ζ)‖2 + 2E
∥∥∇2f(θ; ζ)−∇2f(0; ζ)

∥∥2
≤ C(1 + ‖θ‖2).
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Using the above observation, we find that

E‖∇f(θ; ζ)−∇F (θ)−∇f(0; ζ) +∇F (0)‖2

≤ C‖θ‖2 + 2E‖∇f(θ; ζ)−∇f(0; ζ))‖2

= C‖θ‖2 + 2E
∥∥∥∥∫ 1

0
∇2f(sθ; ζ)θ ds

∥∥∥∥2
≤ C‖θ‖2 + 2E

∫ 1

0
‖∇2f(sθ; ζ)θ‖2 ds

≤ C‖θ‖2(1 +

∫ 1

0
E‖∇2f(sθ; ζ)‖2 ds)

≤ C‖θ‖2(1 + ‖θ‖2). (A.11)

Define the function Σ(θ1,θ2) by

Σ(θ1,θ2) := E(∇f(θ1; ζ)−∇F (θ1))(∇f(θ2; ζ)−∇F (θ2))
>.

Then combining inequalities (A.9), (A.10), (A.11), we have

‖Σ(θ1,θ2)− S‖ ≤ E‖(∇f(θ1; ζ)−∇F (θ1))(∇f(θ2; ζ)−∇F (θ2))
>

− (∇f(0; ζ)−∇F (0))(∇f(0; ζ)−∇F (0))>‖

≤ E‖∇f(θ1; ζ)−∇F (θ1)‖‖∇f(θ2; ζ)−∇F (θ2)−∇f(0; ζ) +∇F (0)‖

+ E‖∇f(θ1; ζ)−∇F (θ2)−∇f(0; ζ) +∇F (0)‖‖∇f(0; ζ)−∇F (0)‖

≤ C(d+ ‖θ1‖)‖θ2‖(1 + ‖θ2‖) + C‖θ1‖(1 + ‖θ1‖). (A.12)

Notice that

Eζ ĝh,v(θ; ζ)ĝh,v(θ; ζ)> − (
1

h
∆h,vF (θ)v)(

1

h
∆h,vF (θ)v)>

= Eζ(ĝh,v(θ; ζ)− 1

h
∆h,vF (θ)v)(ĝh,v(θ; ζ)− 1

h
∆h,vF (θ)v)>

=
1

h2
Eζv(f(θ + hv; ζ)− f(θ; ζ)− F (θ + hv) + F (θ))2v>

=
1

h2
Eζvv>

[ ∫ h

0

∫ h

0
(∇F (θ + s1v)−∇f(θ + s1v; ζ))

(∇F (θ + s2v)−∇f(θ + s2v; ζ))> ds1 ds2

∣∣∣∣]vv>
=

1

h2
Eζvv>

∫ h

0

∫ h

0
Σ(θ + s1v,θ + s2v) ds1 ds2vv

>.
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We can use (A.12) and derive that

‖Eζ ĝh,v(θ; ζ)ĝh,v(θ; ζ)> − (
1

h
∆h,vF (θ)v)(

1

h
∆h,vF (θ)v)> − vv>Svv>‖

≤ C‖v‖4(‖θ‖+ h‖v‖)(1 + ‖θ‖+ h‖v‖)(d+ ‖θ‖+ h‖v‖).

Now we have

‖Eĝh,v(θ; ζ)ĝh,v(θ; ζ)> − E(
1

h
∆h,vF (θ)v)(

1

h
∆h,vF (θ)v)> − Evv>Svv>‖

≤ CE‖v‖4(‖θ‖+ h‖v‖)(1 + ‖θ‖+ h‖v‖)(d+ ‖θ‖+ h‖v‖). (A.13)

By the same argument,

‖E(
1

h
∆h,vF (θ)v)(

1

h
∆h,vF (θ)v)>‖

≤ 1

h2
E
∥∥∥∥vv>[ ∫ h

0

∫ h

0
(∇F (θ + s1v)) (∇F (θ + s2v))> ds1 ds2

∣∣∣∣]vv>∥∥∥∥
≤ CE‖v‖4(‖θ‖2 + h2‖v‖2).

So we finally get

‖Eĝh,v(θ; ζ)ĝh,v(θ; ζ)> − Evv>Svv>‖ ≤ CE‖v‖4(‖θ‖+ h‖v‖)(1 + ‖θ‖+ h‖v‖)(d+ ‖θ‖+ h‖v‖).

for some constant C > 0.

Proof of Theorem 3.3

Proof. We follow the proof in Polyak and Juditsky (1992). The update step is

θn = θn−1 − ηn∇F (θn−1) + ηn(ξn + γn + εn)

= (Id − ηnH)θn−1 + ηn(Hθn−1 −∇F (θn−1) + ξn + γn + εn).

By the argument in Polyak and Juditsky (1992), we only need to prove the following three condi-

tions. First,

∞∑
i=1

1√
i
E‖Hθi−1 −∇F (θi−1) + ξi‖, (A.14)
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is bounded almost surely. Furthermore, we have

E‖γi + εi‖2, (A.15)

is bounded almost surely. Moreover, when t→∞, we have the following convergence in probability,

1√
n

n∑
i=1

(γi + εi) =⇒ N (0, Q). (A.16)

By Assumption 3, we know that

‖∇2F (θ)−∇2F (θ′)‖2 ≤ Lg‖θ − θ′‖2.

By Taylor expansion,

‖Hθi−1 −∇F (θi−1)‖ ≤ C‖θi−1‖2.

By facts (A.2) to (A.4), we know that

E‖Hθi−1 −∇F (θi−1) + ξi‖ ≤ Ci−α,

which indicates that condition (A.14) holds.

Because γi converges to 0 almost surely and εi has bounded variance. So condition (A.15)

holds. To prove condition (A.16), it suffices to verify that,

1√
n

n∑
i=1

εi =⇒ N (0, Q).

By martingale central limit theorem (Durrett, 2019, Theorem 8.2.8), we only need to verify two

conditions,

1

n

n∑
i=1

Ei−1[εiε>i ]→ Q, (A.17)

1

n

n∑
i=1

E
[
‖εi‖21‖εi‖>a√n

]
→ 0, (A.18)

in probability for all a > 0.

Notice that (A.13) is equivalent to the following inequality,

‖En−1εnε>n − Evv>Svv>‖ ≤ C(‖θn−1‖+ hn)(1 + ‖θn−1‖3 + h3n). (A.19)
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Thus En−1[εnε>n ] converges almost surely to Q and condition (A.17) holds.

Now consider the quantity in (A.18), by Proposition 3.1,

Ei−1
[
‖εi‖21‖εi‖>a√n

]
≤
[
Ei−1

[
‖εi‖2+δ

]] 2
2+δ
[
Ei−1

[
1‖εi‖>a

√
n

]] δ
2+δ

.

Note that

Ei−1
[
1‖εi‖>a

√
n

]
= Pi−1

(
‖εi‖ > a

√
n|θi−1

)
≤ 1

a
√
n
Ei−1‖εi‖.

Therefore, it can be bounded by

Ei−1
[
‖εi‖21‖εi‖>a√n

]
≤ C

(
1

a
√
n

) δ
2+δ (

1 + ‖θi−1‖2+δ
) 2

2+δ
(1 + ‖θi−1‖)

δ
2+δ ,

from which we can obtain that

E[‖εi‖21‖εi‖>a√n] ≤ C
(

1

a
√
n

) δ
2+δ

. (A.20)

We find that condition (A.18) holds when n goes to infinity:

1

n

n∑
i=1

E
[
‖εi‖21‖εi‖>a√n

]
≤ C

(
1

a
√
n

) δ
2+δ

→ 0.

Therefore, we conclude the result.

Proof of Proposition 3.5

Proof. For Q(G), let z ∼ N (0, Id), and we now calculate Ezz>Szz>. The (i, i)-th entry is

E
∑
j,k

zizjSjkzkzi =
∑
j 6=i

Sjj + 3Sii = 2Sii + tr(S).

For i 6= j, the (i, j)th entry is

E
∑
k,l

zizkSklzlzj = 2Sij .

So Ezz>Szz> = 2S + tr(S)Id.

For Q(S), let v be sampled from the uniform distribution on the sphere ‖v‖ = d. The Gaussian

vector z can be decomposed into independent radius part and spherical part,

E[zz>] = E
[
‖z‖2 z

‖z‖
z>

‖z‖

]
= Evv>,

E[zz>Szz>] = E
[
‖z‖4 z

‖z‖
z>

‖z‖
S
z

‖z‖
z>

‖z‖

]
=
d+ 2

d
Evv>Svv>.
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Now we have

Evv> = Id, Evv>Svv> =
d

d+ 2
(2S + tr(S)Id).

For Q(U), let u obey the uniform distribution on {
√
de1, . . . ,

√
ded}. By direct calculation, we have

Euu>Suu> =

d∑
j=1

1

d
· d2Sjj = d diag(S).

The final two cases for Q(U), Q(P) can also be verified by direct calculation.

A.2 Extensions to local strong convexity and nonsmoothness

Asymptotic behavior for locally strongly convex loss function

To comply with the settings of the logistic regression, we need to consider a relaxed version of

Assumption 1 as follows,

Assumption 1′. The population loss function F (θ) is twice continuously differentiable, convex

and Lf -smooth. In addition, there exists δ1 > 0 such that for all θ in the δ1-ball centered at θ?, the

Hessian matrix ∇2F (θ) is positive-definite.

Assumption 1′ considers local strong convexity of the population objective F (·) at the minimizer

θ?. Intuitively, after a number of steps in the (KW) SGD update, the estimated parameter θn would

be sufficiently close to θ? and we have the strong convexity from there. This assumption naturally

suites the settings of the logistic regression.

Theorem A.2. Let Assumption 1′, and 2 to 4 hold. Set the step size as ηn = η0n
−α for some

constant η0 > 0 and α ∈
(
1
2 , 1
)
, and the spacing parameter as hn = h0n

−γ for some constant

h0 > 0, and γ ∈
(
1
2 , 1
)
. The averaged estimator θn satisfies,

√
n
(
θn − θ?

)
=⇒ N

(
0, H−1QH−1

)
, as n→∞.

Proof. Under assumption 1′, using Lemma B.1 in Su and Zhu (2018), for all θ in the δ1-ball centered

at 0, we have

〈θ,∇F (θ)〉 ≥ ρ‖θ‖min {‖θ‖, δ1} . (A.21)
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for some ρ > 0. For the first part in the RHS of the previous inequality (A.5), using inequal-

ity (A.21), we have

〈∇F (θn−1),θn−1〉 ≥ ρ‖θn−1‖min {‖θn−1‖, δ1} ,

Furthermore, by (A.6) and (A.7), we have

En−1‖θn‖2 ≤
(
1 + C2

2η
2
n

)
‖θn−1‖2 − 2ηnρ‖θn−1‖min {‖θn−1‖, δ1}+ C2η

2
n.

By Robbins-Siegmund theorem, ‖θn‖2 converges to some random variable almost surely and

∞∑
n=1

2ηnρ‖θn‖min {‖θn‖, δ1} <∞.

Combining the fact that
∑∞

n=1 ηn =∞ we can yield that θn converges almost surely to 0. The rest

part follows from the proof of Theorem 3.3.

Asymptotic behavior of (AKW) estimator for nonsmooth loss functions

We present Theorem 3.3 in the main paper with strengthened Assumptions 2 and 3, where we

assume the existence of the gradient of the inaccessible (RM) stochastic gradient g(θ; ζ) and its

Gram matrix S = E[g(θ?; ζ)g(θ?; ζ)>]. The theoretical analysis of the asymptotic distribution of

the (AKW) estimator remains working with a weakened assumption, which is a natural fit to some

nonsmooth loss functions F (θ) including the quantile regression in Example 2.3.

Assumption A.3. Assume there exists C1 > 0 such that
∥∥Eĝh,v(θ; ζ)−∇F (θ)

∥∥ ≤ C1h for any h >

0 and θ ∈ Rd. Further assume there exists C2 > 0 such that E
[
ĝh,v(θ?; ζ)ĝh,v(θ?; ζ)>

]
= Q + ∆h

for some matrix Q ∈ Rd×d and ‖∆h‖ ≤ C2h
ι, for some ι > 0. Moreover, for some 0 < δ ≤ 2, there

exists M > 0,

E‖ĝh,v(θ; ζn)−∇F (θ)‖2+δ ≤M(‖θ − θ?‖2+δ + h2+δ).

Theorem A.4. Let Assumption 1 and A.3 hold. Under the step size and spacing parameter

conditions specified in Theorem 3.3, the averaged estimator θn satisfies,

√
n
(
θn − θ?

)
=⇒ N

(
0, H−1QH−1

)
, as n→∞. (A.22)

Proof. Under Assumption 1 and A.3, the conclusions in Lemma 2.4 and Lemma 3.2 naturally hold.

The rest of the proof follows from the proof in Proposition 3.1 and Theorem 3.3.
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A.3 Illustration of choices of directions Pv

We first note that Q(G) � Q(S) regardless of the dimension d and Gram matrix S. Intuitively, when

the direction v is generated by Gaussian (G), it can be decomposed into two independent random

variables: the radical part ‖v‖ and the spherical part v/‖v‖. The spherical part v/‖v‖ follows

the same distribution as the uniform distribution on the sphere with radius d (which is identical

to (S)). The extra randomness in the radical part ‖v‖2 ∼ χ2(d) leads to a larger magnitude of Q

compared to that of (S). Therefore the (AKW) estimator with Gaussian directions (G) is always

inferior to that with spherical directions (S), asymptotically. However, for the other candidates,

they are not directly comparable, and the optimal choice of Pv depends on the optimality criterion,

and Gram matrix S.

As a simple illustration, we consider S = diag(1, r0) for some r0 > 0. We have

(S) Spherical: Q(S) = diag
(
r0+3
2 , 3r0+1

2

)
.

(I) Uniform in a natural coordinate basis: Q(I) = diag(2, 2r0).

(U) Uniform in an arbitrary orthonormal basis U : when U = (cosω, sinω;− sinω, cosω) and

ω = 0, we have Q(U) = Q(I) = diag(2, 2r0); when ω = π/4, we have Q(U) = diag(1 + r0, 1 + r0).

(P) Non-uniform in a natural coordinate basis: diag
(

1
p1
, r0
1−p1

)
, p1 ∈ (0, 1).

From the above we can see that, the choices of the distribution of direction vectors Pv depends

on the optimality-criteria on comparing the covariance matrices. Specifically in the above example,

if one seeks to minimize

• the trace of covariance matrix, we have

tr(Q(S)) = tr(Q(I)) = tr(Q(U)) = 2 + 2r0, tr(Q(P)) =
1

p1
+

r0
1− p1

,

and the optimal distribution that minimizes the trace depends on the value of p1.

• the determinant of covariance matrix, we have

det(Q(S)) =
3r20 + 10r0 + 3

4
, det(Q(I)) = 4r0,

det(Q(U)) =
− cos(4ω)(r0 − 1)2 + r20 + 6r0 + 1

2
, det(Q(P)) =

r0
p1(1− p1)

.

13



Figure A.1: Comparison of Q matrices under different direction distributions Pv when S =

diag(1, 1/2).

By a simple derivation, we have det(Q(S)) ≥ det(Q(U)) ≥ det(Q(I)) and det(Q(P)) ≥ det(Q(I)).

• the operator norm of covariance matrix, i.e., the largest eigenvalue, we have

λmax(Q(S)) =
r0 + 3

2
, λmax(Q(I)) = 2,

λmax(Q(P)) = max

{
1

p1
,

r0
1− p1

}
, λmax(Q(U)) = r0 + 1 + (1− r0) |cos(2ω)| .

The smallest operator norm for Q(P) is given by p1 = 1
1+r0

. When r0 ≤ 1, and 0 ≤ ω ≤ π/6, we

have λmax(Q(I)) ≥ λmax(Q(U)) ≥ λmax(Q(S)) ≥ λmax(Q(P)). When r0 ≥ 1, and 0 ≤ ω ≤ π/6,

we have λmax(Q(P)) ≥ λmax(Q(S)) ≥ λmax(Q(U)) ≥ λmax(Q(I)). For other choices of ω, we can

obtain a comparison analogously.

In general, it is natural to use Loewner order to compare two positive semi-definite matrix

A,B ∈ Rd×d, i.e., A � B if x>Ax ≥ x>Bx for any x ∈ Rd. It is equivalent to say, for any positive

constant c > 0, the ellipsoid {x ∈ Rd : x>Ax ≤ c} contains the ellipsoid {x ∈ Rd : x>Bx ≤ c}.

To better illustrate the result, we consider the 2-dimensional case where S = diag(1, 1/2) and plot

the ellipse {x ∈ R2 : x>Q(·)x = 2}. In Figure A.1, we compare Q(S), Q(I) (as a special case of Q(U)

14



with θ = 0), Q(U) with θ = π
6 , and Q(P) with p1 = 1

1+r0
= 2

3 . As can be inferred from the plot, none

of the ellipsoids contain any other ellipsoids.

As shown in this illustrative example, there is no unique optimal direction distribution, and a

practitioner might choose a search direction based on her favorable optimality criterion.

Lastly, in the following Remark A.5, we show that, if the optimality criterion degenerates to one

dimension, one may utilize the non-uniform distribution (P) to obtain a smaller limiting variance.

In particular, consider the application where we are only interested in the first coordinate of θ?, in

which cases the optimality criterion of the limiting variance is on θ?1. We will show that the (AKW)

estimator with the non-uniform distribution (P) achieves the Cramér-Rao lower bound.

Remark A.5. Assume the population loss function F (·) has Hessian H = Id. Considering a

non-uniform sampling (P) from {ek}dk=1 for the direction distribution Pv. We choose v = ek with

probability pk for k = 1, 2, . . . , d, where p1 = 1− p for some constant p ∈ (0, 1] and pk = p/(d− 1)

for k 6= 1. Define i.i.d. random variables kn where kn = 1 with probability 1− p and kn = 2, . . . , d

uniformly with probability p/(d− 1). The gradient estimator is defined by,

ĝ(θn−1; ζn) =
f(θn−1 + hnekn ; ζn)− f(θn−1; ζn)

hnpn
ekn ,

where pn = 1− p if kn = 1, pn = p/(d− 1) for kn > 1. By the same argument as Proposition 3.5,

the variance for θn in the direction e1 is,

nVar
(
e>1 (θn − θ?)

)
=

S11
1− p

.

As p → 0, we approximately obtain the optimal variance given by Cramér-Rao lower bound in the

direction e1. However, in order to approach the optimal variance in the direction e1, we increase

the magnitude of variance in all other directions, where the variance in other directions is given by

nVar
(
e>k (θn − θ?)

)
= (d− 1)Skk/p for k = 2, . . . , d.
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A.4 Multi-query approximation

Proof of Theorem 3.6

Proof. The convergence result can be obtained as in the two function evaluation case. The only

difference is the following calculation:

E

(
1

m

m∑
i=1

viv
>
i

)
S

(
1

m

m∑
i=1

viv
>
i

)
=

1

m
Evv>Svv> +

m− 1

m
S,

which implies the desired result.

Proof of Theorem 3.7

Proof. It is clear that Qm = S for m = d. We need to compute the quantity

Qm =
d2

m2
E
( m∑
i=1

viv
>
i

)
S

( m∑
i=1

viv
>
i

)
,

which can be simplifies to

Qm =
d2

m2
E
( m∑
i=1

viv
>
i Sviv

>
i

)
+
d2

m2
E
(∑
i 6=j
viv
>
i Svjv

>
j

)
.

By symmetry, it equals to

Qm =
d2

m
Ev1v>1 Sv1v>1 +

d2(m− 1)

m
Ev1v>1 Sv2v>2 .

We know Ev1v>1 Sv1v>1 = 1
d2
Q and Qd = S. So we can solve for Ev1v>1 Sv2v>2 and get

Ev1v>1 Sv2v>2 =
1

d(d− 1)
(
1

d
Q− diag(S)).

Therefore,

Qm =
1

m
Q+

d(m− 1)

m(d− 1)
(
1

d
Q− diagS)

=
d−m
m(d− 1)

Q+
d(m− 1)

m(d− 1)
S.
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B Proofs of Results in Section 4

B.1 Proof of Lemma 4.1

Before we come to the proof of the Hessian estimator (17) in Lemma 4.1, we first introduce a naive

method to estimate Hessian matrix H which we omit in the main text.

Inspired by the previous gradient estimator, we can estimate the Hessian matrix H by the

following

Ĝn =
1

mh2n

m∑
j=1

[
∆
hnv

(j)
n
f(θn−1 + hnu

(j)
n ; ζn)−∆

hnv
(j)
n
f(θn−1; ζn)

]
u(j)
n v

(j)>
n ,

where {u(j)
n }mj=1 and {v(j)n }mj=1 are i.i.d. random vectors and m > 0 is a parameter (which might

be different from m in the previous section). Therefore, our naive Hessian estimator is,

H̃n =
1

n

n∑
i=1

Ĝi + Ĝ>i
2

. (B.1)

where the (Ĝi + Ĝ>i )/2 term ensures the symmetry of H̃n. The function query complexity is O(m)

per step for this Hessian estimation.

Now we restate our Lemma 4.1 for the both estimators (B.1) and (17).

Lemma B.1. Under the assumptions in Theorem 3.3, we have the following result for the Hessian

estimator (B.1),

E‖H̃n −H‖2 ≤ C1n
−α + C2

(
1 +

1

m

)
n−1. (B.2)

The Hessian estimator (17) satisfies,

E‖H̃n −H‖2 ≤ C1n
−α + C2p

−1n−1. (B.3)
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Proof. In the case of naive Hessian estimator (B.1), we decompose H̃n −H as follows,

H̃n −H =
1

n

n∑
i=1

Ĝi + Ĝ>n
2

−H

=
1

n

n∑
i=1

Ĝi + Ĝ>i
2

−

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i


+

1

n

n∑
i=1

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

−∇2f(θi−1; ζi)


+

1

n

n∑
i=1

[
∇2f(θi−1; ζi)−∇2f(0; ζi)

]
+

1

n

n∑
i=1

(
∇2f(0; ζi)−H

)
. (B.4)

For the first term in the decomposition (B.4),

En−1
[
‖ 1

h2n

[
f(θn−1 + hnu+ hnv; ζn)− f(θn−1 + hnu; ζn)− f(θn−1 + hnv; ζn)

+ f(θn−1; ζn)
]
uv> − uu>∇2f(θn−1; ζn)vv>

∥∥∥2 ∣∣∣∣u,v]
≤ En−1

[∥∥∥∥ 1

h2n
uu>

∫ hn

0

∫ hn

0
∇2f(θn−1 + s1u+ s2v; ζn)−∇2f(θn−1; ζn) ds1 ds2vv

>
∥∥∥∥2 ∣∣∣∣u,v

]

≤ 1

h2n
‖u‖2‖v‖2

∫ hn

0

∫ hn

0
En−1

[∥∥∇2f(θn−1 + s1u+ s2v; ζn)−∇2f(θn−1; ζn)
∥∥2 ∣∣u,v] ds1 ds2

≤ C

h2n
‖u‖2‖v‖2

∫ hn

0

∫ hn

0
‖s1u+ s2v‖2 ds1 ds2 ≤ Ch2n‖u‖2‖v‖2(‖u‖2 + ‖v‖2).

The above derivation implies that

E‖Ĝn −

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

 ‖ ≤ Ch2n.
Therefore, we can show that

E

∥∥∥∥∥∥ 1

n

n∑
i=1

Ĝi + Ĝ>i
2

−

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θi−1; ζi)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

∥∥∥∥∥∥
2

≤ E

∥∥∥∥∥∥ 1

n

n∑
i=1

Ĝi −
 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θi−1; ζi)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

∥∥∥∥∥∥
2

≤ C 1

n

n∑
i=1

h2i ≤ Cn−2γ , (B.5)

where in the first inequality, we use the fact that, Ĝi and Ĝ>i has the same distribution.
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For the second term, notice that

En−1

∥∥∥∥∥∥
 1

m

m∑
j=1

uju
>
j

∇2f(θn−1; ζn)

 1

m

m∑
j=1

vjv
>
j

−∇2f(θn−1; ζn)

∥∥∥∥∥∥
2

≤ En−1
∥∥∥∥ 1

m
uiu

>
i − Id

∥∥∥∥2 ∥∥∇2f(θn−1; ζn)
∥∥2 ∥∥∥∥ 1

m
vv> − Id

∥∥∥∥2
+ En−1

∥∥∥∥ 1

m
uiu

>
i − Id

∥∥∥∥2 ∥∥∇2f(θn−1; ζn)
∥∥2 + En−1

∥∥∇2f(θn−1; ζn)
∥∥2 ∥∥∥∥ 1

m
vv> − Id

∥∥∥∥2
≤ C

m

(
1 + ‖θn−1‖2

)
.

Furthermore, the second term is a sum of martingale difference sequence and we have

E‖ 1

n

n∑
i=1

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

−∇2f(θi−1; ζi)

 ‖2
=

1

n

n∑
i=1

E‖

 1

m

m∑
j=1

u
(j)
i u

(j)>
i

∇2f(θn−1; ζn)

 1

m

m∑
j=1

v
(j)
i v

(j)>
i

−∇2f(θi−1; ζi)

 ‖2
≤ C 1

n2

n∑
i=1

1

m

(
1 + E‖θn−1‖2

)
≤ C 1

mn
. (B.6)

For the third term in (B.4), we have

E

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(θi−1; ζi)−∇2f(0; ζi)

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

E
∥∥∇2f(θi−1; ζi)−∇2f(0; ζi)

∥∥2
≤ C

n

n∑
i=1

E‖θi‖2 ≤ Cn−α. (B.7)

For the final term, we have

E

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(0; ζi)−H

∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

E
∥∥∇2f(0; ζi)−H

∥∥2
≤ C

n2

n∑
i=1

E
∥∥∇2f(0; ζi)

2 −H2
∥∥ ≤ Cn−1, (B.8)

where the second inequality is due to the fact that it is an equality in Frobenius norm.

Combine the previous estimates (B.5), (B.6), (B.7) and (B.8), our naive Hessian estimator

satisfies,

E
∥∥∥H̃n −H

∥∥∥2 ≤ Cn−α + C(1 +
1

m
)n−1.
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Similarly, for the Hessian estimator (17), we have the following decomposition,

H̃n −H =
1

n

n∑
i=1

G̃i + G̃>i
2

−H

=
1

n

n∑
i=1

G̃i + G̃>i
2

− Ĝi + Ĝ>i
2

+
1

n

n∑
i=1

(
Ĝi + Ĝ>i

2
−∇2f(θi−1; ζi)

)

+
1

n

n∑
i=1

[
∇2f(θi−1; ζi)−∇2f(0; ζi)

]
+

1

n

n∑
i=1

∇2f(0; ζi)−H. (B.9)

Given Ĝn, our Bernoulli sampling Hessian estimator G̃n satisfies,

E
∥∥∥G̃n − Ĝn∥∥∥2

Fro
= E

 d∑
j=1

d∑
k=1

1

p

(
Ĝ(jk)
n B(jk)

n − Ĝ(jk)
n

)2
=

d∑
j=1

d∑
k=1

E
(

1

p
B(jk)
n − 1

)2 (
Ĝ(jk)
n

)2
=

1− p
p

d∑
j=1

d∑
k=1

E
(
Ĝ(jk)
n

)2
=

1− p
p
‖Ĝn‖2Fro,

where the entries of Bn are i.i.d. and follow a Bernoulli distribution, i.e., B
(k`)
n ∼ Bernoulli(p), for

some fixed p ∈ (0, 1). Here the second equality uses the fact that B
(jk)
i are independent from each

other. Therefore,

E

∥∥∥∥∥ 1

n

n∑
i=1

G̃i − Ĝi

∥∥∥∥∥
2

≤ E

∥∥∥∥∥ 1

n

n∑
i=1

G̃i − Ĝi

∥∥∥∥∥
2

Fro

≤ C 1− p
p

n−2
n∑
i=1

E
∥∥∥Ĝi∥∥∥2 .

With 1/t
∑n

i=1 E‖Ĝi‖2 ≤ C + Cn−α, the first term in decomposition (B.9) satisfies,

E

∥∥∥∥∥ 1

n

n∑
i=1

G̃i − Ĝi

∥∥∥∥∥
2

≤ C 1− p
p

n−1. (B.10)

Other terms can be bounded similarly as in the first case:

E

∥∥∥∥∥ 1

n

n∑
i=1

Ĝi + Ĝ>i
2

−∇2f(θi−1; ζi)

∥∥∥∥∥
2

≤ Cn−2γ , (B.11)

E

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(θi−1; ζi)−∇2f(0; ζi)

∥∥∥∥∥
2

≤ Cn−α, (B.12)

E

∥∥∥∥∥ 1

n

n∑
i=1

∇2f(0; ζi)−H

∥∥∥∥∥
2

≤ Cn−1. (B.13)

Combine inequality (B.10), (B.11), (B.12) and (B.13), we obtain the desired result for Hessian

estimator (17).
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Proof of Theorem 4.3

To prove Theorem 4.3, we first present the following lemma on the error rate of Q̂n.

Lemma B.2. Under conditions in Theorem 4.3, our online Gram matrix estimate Q̂n has the

following convergence rate,

E‖Q̂n −Q‖ ≤ Cn−α/2.

Proof. Recall the update rule,

θn = θn−1 − ηn∇F (θn−1) + ηn(ξn + γn + εn),

and our Gram matrix estimate Q̂n is,

Q̂n =
1

n

n∑
i=1

(∇F (θi−1)− ξi − γi − εi)(∇F (θi−1)− ξi − γi − εi)>.

It can be seen that we have the following estimates,

En−1

∥∥∥∥∥ 1

n

n∑
i=1

∇F (θi−1)∇F (θi−1)
>

∥∥∥∥∥ ≤ C 1

n

n∑
i=1

En−1‖θi−1‖2 ≤ Cn−α,

En−1

∥∥∥∥∥ 1

n

n∑
i=1

ξiξ
>
i

∥∥∥∥∥ ≤ C 1

n

n∑
i=1

h2n ≤ Cn−2γ ,

En−1

∥∥∥∥∥ 1

n

n∑
i=1

γiγ
>
i

∥∥∥∥∥ ≤ C 1

n

n∑
i=1

(En−1‖θi−1‖2 + h2n) ≤ Cn−α,

En−1

∥∥∥∥∥ 1

n

n∑
i=1

εiε
>
i

∥∥∥∥∥ ≤ C 1

n

n∑
i=1

(En−1‖θi−1‖2 + h2n + 1) ≤ C.

The crossing terms between them can be bounded by Cauchy-Schwarz inequality. Therefore, we

can find that all terms in Q̂n except
∑n

i=1 εiε
>
i /t can be bounded by Cn−α/2. So it suffices to

prove,

E

∥∥∥∥∥ 1

n

n∑
i=1

εiε
>
i −Q

∥∥∥∥∥ ≤ Cn−α/2. (B.14)

Define a new sequence zn := εnε
>
n − En−1εnε>n . Then zn is a martingale difference sequence and

we have ∥∥∥εnε>n −Q∥∥∥ ≤ ‖zn‖+
∥∥∥En−1εnε>n −Q∥∥∥

≤ ‖zn‖+ C
(
‖θn−1‖+ ‖θn−1‖4 + hn + h4n

)
,
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where the last inequality leverages inequality (A.19). Now we have,

E

∥∥∥∥∥ 1

n

n∑
i=1

εiε
>
i −Q

∥∥∥∥∥ ≤ E

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥+ CE
(
‖θn−1‖+ ‖θn−1‖4 + hn + h4n

)
≤ E

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥+ Cn−α/2.

Thus we turn the proof of (B.14) into,

E

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥ ≤ Cn−1/2. (B.15)

By Hölder’s inequality, it can be derived that,

En−1‖zn‖2 ≤ En−1‖εn‖4 ≤ C(‖θn−1‖4 + h4n + 1).

Combine Lemma B.3 with Lemma 3.1, we have

E

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥
2

≤ 1

n2

n∑
i=1

CE
(
‖θi−1‖4 + h4i + 1

)
≤ Cn−1.

Therefore, condition (B.15) is satisfied through Jensen’s inequality.

We now come back to the main proof of Theorem 4.3.

Theorem 4.3. Assume Assumptions 1 to 4 hold for δ = 2. Set the step size as ηn = η0n
−α for

some constant η0 > 0 and α ∈
(
1
2 , 1
)
, and the spacing parameter as hn = h0n

−γ for some constant

h0 > 0, and γ ∈
(
1
2 , 1
)
. We have

E
∥∥∥Ĥ−1n Q̂nĤ

−1
n −H−1QH−1

∥∥∥ ≤ Cn−α/2.
Proof. For the thresholding estimator Ĥn, since ‖Ĥn − H̃n‖ ≤ ‖H̃n − H‖ by construction, it is

consistent with the rate below,

E‖Ĥn −H‖2 ≤ 2E‖H̃n −H‖2 + 2E‖Ĥn − H̃n‖2 ≤ 4E‖H̃n −H‖2 ≤ Cn−α, (B.16)

where the last inequality from Lemma 4.1.
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By Lemma B.4, the inverse matrix error satisfies,

E‖Ĥ−1n −H−1‖2

≤ E
[
1‖H−1(Ĥn−H)‖≤1/22‖Ĥn −H‖‖H−1‖2 + 1‖H−1(Ĥn−H)‖≥1/2‖Ĥ

−1
n −H−1‖

]2
≤ 8‖H−1‖4E‖Ĥn −H‖2 + 2(κ−11 + λ−1min(H))2P

(
‖H−1(Ĥn −H)‖ ≥ 1

2

)
≤ 8‖H−1‖4E‖Ĥn −H‖2 +

1

2λ2
(κ−11 + λ−1min(H))2E‖Ĥn −H‖2

≤ C n−α, (B.17)

where the third inequality follows from Markov’s inequality and the last one from (B.16).

We now consider our target term, with our previous results (B.16), (B.17), and Lemma B.2, we

can obtain that,

E
∥∥∥Ĥ−1n Q̂nĤ

−1
n −H−1QH−1

∥∥∥
= E

∥∥∥Ĥ−1n (Q̂n −Q)Ĥ−1n + (H−1 + Ĥ−1n −H−1)Q(H−1 + Ĥ−1n −H−1)−H−1QH−1
∥∥∥

≤ E
∥∥∥Ĥ−1n (Q̂n −Q)Ĥ−1n

∥∥∥+ E
∥∥∥H−1Q(Ĥ−1n −H−1)

∥∥∥+ E
∥∥∥(Ĥ−1n −H−1)QH−1

∥∥∥
+E

∥∥∥(Ĥ−1n −H−1)Q(Ĥ−1n −H−1)
∥∥∥

≤ κ−21 E
∥∥∥Q̂n −Q∥∥∥+ 2λ−1‖Q‖E

∥∥∥Ĥ−1n −H−1∥∥∥+ ‖Q‖E
∥∥∥Ĥ−1n −H−1∥∥∥2

≤ Cn−α/2,

which completes the proof.

Proof of Theorem 4.4

Proof. We first show that we can extend our result in Theorem 3.3 to the following form,

1√
n

bnrc∑
i=1

θi =⇒ Σ1/2W r, r ∈ [0, 1].

where Σ = H−1QH−1 andW r is a d-dimensional vector of independent standard Brownian motions

on [0, 1]. For any r ∈ [0, 1], we consider the following partial summation process,

Bn(r) =
1

n

bnrc∑
i=1

∆i,
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where ∆i = θi − θ? = θi. Now consider the following alternative partial summation process,

B
′
n(r) =

1

n

bnrc∑
i=1

∆′i,

where

∆′i = ∆′i−1 − ηiH∆′i−1 + ηn(ξn + γn + εn), ∆′0 = ∆0 = θ0.

From Theorem 2 in Polyak and Juditsky (1992), we know that
√
n supr |B

′
n(r) − Bn(r)| = op(1).

Now we consider the weak convergence of B
′
n(r) instead. Using the decomposition below,

√
nB
′
n(r) =

1√
nbnrcηbnrc

θ0 +
1√
n

bnrc∑
i=1

H−1(ξn + γn + εn) +
1√
n

bnrc∑
i=1

w
bnrc
i (ξn + γn + εn),

where 1/
√
n
∑n

i=1 ‖wni ‖ → 0. Using the result from Lemma 3.1, the first and the third terms on

the RHS are op(1). Combining Theorem 4.2 from Hall and Heyde (1980) and Equation (A.16), we

have

1√
n

bnrc∑
i=1

H−1(ξn + γn + εn) =⇒ Σ1/2W r.

Therefore, for any w ∈ Rd, we have

Cn(r) =
1√
n

bnrc∑
i=1

w>θi ⇒ w>(w>Σw)1/2Wr, r ∈ [0, 1].

Here Wr is the standard one dimensional Brownian motion. In addition,

w>Vnw =
1

n

n∑
i=1

[
Cn

(
i

n

)
− i

n
Cn(1)

] [
Cn

(
i

n

)
− i

n
Cn(1)

]>
.

Notice that w>(θn) = 1√
n
Cn(1), and

n
(w>θn)2

w>Vnw
⇒ W 2

1∫ 1
0 (Wr − rW1)2 dr

,

using the continuous mapping theorem.

B.1.1 Technical Lemmas

The following lemma is from Assouad (1975). We include the proof here.
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Lemma B.3 (Assouad (1975)). Let {Xn} be a martingale difference sequence, i.e. E[Xn|Xn−1] =

0. For any 1 ≤ p ≤ 2 and any norm ‖ · ‖ on Rd, there exists a constant C such that

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

≤ C
n∑
i=1

E [‖Xi‖p|Xi−1] .

Proof. We would like to show that there exists a constant C (which depends on d and p) such that

for any a, b ∈ Rd,

1

2
(‖a+ b‖p2 + ‖a− b‖p2) ≤ ‖a‖

p
2 + C‖b‖p2,

where ‖ · ‖2 is the 2-norm. To see this, in the one dimensional case, this is equivalent to

1

2
(|1 + x|p + |1− x|p) ≤ 1 + C|x|p.

At x = 1, the left hand side is differentiable and its first derivative is 0, so there exists a constant C

such that the inequality holds in a neighborhood of x = 1. At x → ±∞, the inequality also holds

with some constant C. So it is easy to find a constant C such that the inequality holds for all x.

The proof for the d-dimensional case is the same.

Using the above inequality, we have

En−1

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

2

= En−1

∥∥∥∥∥
n−1∑
i=1

Xi +Xn

∥∥∥∥∥
p

2

≤ 2

∥∥∥∥∥
n−1∑
i=1

Xi

∥∥∥∥∥
p

2

+ 2CEn−1‖Xn‖p2 − En−1

∥∥∥∥∥
n−1∑
i=1

Xi −Xn

∥∥∥∥∥
p

2

.

On the other hand,

En−1

∥∥∥∥∥
n−1∑
i=1

Xi −Xn

∥∥∥∥∥
p

2

≥

∥∥∥∥∥
n−1∑
i=1

Xi − En−1Xn

∥∥∥∥∥
p

2

=

∥∥∥∥∥
n−1∑
i=1

Xi

∥∥∥∥∥
p

2

.

So

En−1

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

2

≤

∥∥∥∥∥
n−1∑
i=1

Xi

∥∥∥∥∥
p

2

+ 2CEn−1‖Xn‖p2.

By induction, we then have

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

2

≤ 2C
n∑
i=1

E [‖Xi‖p2|Xi−1] .
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For any general norm, there exists a constant C such that

1

C
‖X‖ ≤ ‖X‖2 ≤ C‖X‖.

So the same result holds for any norm.

We now provide a matrix perturbation inequality from Chen et al. (2021).

Lemma B.4. If a matrix B = A+ E where A and B are invertible, we have,

∥∥B−1 −A−1∥∥ ≤ ‖A−1‖2‖E‖ 1

1− ‖A−1E‖
.

Proof. Notice that

B−1 = (A+ E)−1 = A−1 −A−1
(
A−1 + E−1

)−1
A−1

= A−1 −A−1E
(
A−1E + I

)−1
A−1.

Therefore, the inversion error is,

‖B−1 −A−1‖ =
∥∥∥A−1E (A−1E + I

)−1
A−1

∥∥∥
≤ ‖A−1‖2‖E‖‖(A−1E + I)−1‖

≤ ‖A−1‖2‖E‖ 1

λmin(A−1E + I)

≤ ‖A−1‖2‖E‖ 1

1− ‖A−1E‖
,

where we use Weyl’s inequality in the last inequality.

B.2 Finite-difference stochastic Newton method

As a by-product and an application, the online finite-difference estimator of Hessian in (19) enables

us to develop the (KW) version of the stochastic Newton’s method. Existing literature that handles

the (RM) version of the stochastic Newton’s method traces back to Ruppert (1985). Given an initial

point θ0, the (KW) stochastic Newton’s method has the following updating rule,

θn = θn−1 −
1

n
Ĥ−1n−1ĝhn,vn(θn−1; ζn), (B.18)
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Here Ĥ−1n a recursive estimator of H−1. We modify the thresholding Hessian estimator Ĥn in (19)

as follows. Let U Λ̃nU
> be the eigenvalue decomposition of H̃n in (17), and define

Ĥn = U Λ̂nU
>, Λ̂n,kk = max

{
κ1,min

{
κ2, Λ̃n,kk

}}
, k = 1, 2, . . . , d, (B.19)

for some constants 0 < κ1 < λ < Lf < κ2, where λ, Lf are defined in Assumption 1.

Theorem B.5. Under the assumptions in Theorem 3.3, the Hessian estimator Ĥn in (B.19) con-

verges in probability to the empirical Hessian matrix H. The stochastic Newton estimator θn in

(B.18) converges to θ? almost surely and has the following limiting distribution,

√
n (θn − θ?) =⇒ N

(
0, H−1QH−1

)
, (B.20)

for the same Q as in Theorem 3.3.

Theorem B.5 states that the final iterate of the (KW) stochastic Newton method (B.18) entails

the same asymptotic distribution as the averaged (AKW) estimator (6). In contrast to (AKW),

(B.18) leverages additional Hessian information to achieve the asymptotic normality and efficiency.

Nevertheless, the numerical implementation of the (KW) stochastic Newton’s method requires to

update a Hessian estimator Ĥn in all iterations, which demands significant additional computation

unless such an estimator is yet computed and maintained along the procedure for other purposes.

Proof of Theorem B.5

Proof. Notice that

θn = θn−1 −
1

n
H−1n−1∇F (θn−1) +

1

n
H
−1
n−1 (ξn + γn + εn) ,

where ξn,γn, εn are defined at the beginning of the supplement. We now show that Lemma 3.1

holds under α = 1. Following from the same logic in Lemma 3.1, we can show that there exists

some universal constant n0 > 0, such that for all n > n0, and some constants C1, C2,

En−1‖θn‖2 ≤
(

1− C1

n

)
‖θn−1‖2 + C2n

−2. (B.21)

Therefore, θn → 0 almost surely by martingale convergence theorem (Robbins and Monro, 1951).

Now we consider the convergence rate of θn.
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Using the proof in Lemma 3.1, we can show that

En−1‖θn‖2 ≤ C
(
n−C1/2 + n−1

)
. (B.22)

Similarly,

En−1‖θn‖2+δ ≤ C
(
n−C1/2 + n−(1+δ)

)
. (B.23)

Now we consider the limiting distribution.

θn = θn−1 −
1

n
H−1∇F (θn−1)−

1

n

(
H−1n−1 −H

−1)∇F (θn−1) +
1

n
H−1n−1 (ξn + γn + εn)

=

(
1− 1

n

)
θn−1 −

1

n
H−1δn −

1

n

(
H−1n−1 −H

−1)∇F (θn−1) +
1

n
H−1n−1 (ξn + γn + εn) ,

where δn = ∇F (θn−1)−Hθn−1. By induction, we can find that

θn =
1

n

n−1∑
k=0

H−1k εk+1 +
1

n

n−1∑
k=0

H−1k
(
ξk+1 + γk+1

)
− 1

n
H−1

n−1∑
k=0

δk+1 −
1

n

n−1∑
k=0

(
H−1k −H

−1)∇F (θk).

The last three terms in the RHS above all converge to zero due to Assumption 4. Now we only

need to show that 1√
n

∑n−1
k=0 H

−1
k εk+1 converges to a normal distribution. Consider

Ek
[
H−1k εk+1ε

>
k+1H

−1
k

]
= H−1k Ek

[
εk+1ε

>
k+1

]
H−1k ,

recall that in (A.19) we have shown that Ek
[
εk+1ε

>
k+1

]
converges almost surely to Q. Therefore,

by Assumption 4, Ek
[
H−1k εk+1ε

>
k+1H

−1
k

]
converges in probability to H−1QH−1.

Obviously, we can get the tail bound similar to (A.20) and by martingale central limit theorem

(Duflo, 1997, Theorem 2.1.9),

1√
n

n−1∑
k=0

H−1k εk+1 =⇒ N
(
0, H−1QH−1

)
.

C Additional Results of Numerical Experiments

In this section, we present additional results of numerical experiments.
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d Pv Estimation error Average coverage rate Average length

Parameter Plug-in Cov Plug-in Oracle Plug-in Oracle

0.0299 0.0697 0.9440 0.9464 3.3620 3.2580
(I)

(0.0131) (0.0514) (0.1196) (0.1207) (0.8587) -

0.0321 0.0712 0.9484 0.9468 3.2746 3.2653
(S)

(0.0137) (0.0507) (0.1245) (0.1116) (0.8135) -

0.0360 0.0813 0.9508 0.9464 3.8779 3.8635

5

(G)
(0.0149) (0.0537) (0.1196) (0.1103) (0.9655) -

0.0799 0.1213 0.9383 0.9369 5.6873 5.6356
(I)

(0.0146) (0.0359) (0.0577) (0.0561) (0.6775) -

0.0838 0.1281 0.9357 0.9347 5.4677 5.4178
(S)

(0.0153) (0.0382) (0.0557) (0.0580) (0.6523) -

0.0859 0.1282 0.9379 0.9372 5.7343 5.6822

20

(G)
(0.0152) (0.0359) (0.0548) (0.0543) (0.6820) -

0.2867 0.7685 0.9608 0.9041 12.7375 10.4868
(I)

(0.0253) (0.2933) (0.0185) (0.0314) (0.8942) -

0.2913 0.7801 0.9615 0.9032 13.1285 10.7976
(S)

(0.0256) (0.3115) (0.0215) (0.0313) (0.9803) -

0.2925 0.7845 0.9618 0.9043 13.2771 10.9051

100

(G)
(0.0259) (0.3146) (0.0191) (0.0320) (0.9883) -

Table C.2: Comparison among different direction distributions Pv (Detailed specification of

(I),(S),(G) can be referred to Section 3.1). We consider the logistic regression model with

equicorrelation covariance design, and the (AKW) estimators are computed based on the case of

two function queries (m = 1). Corresponding standard errors are reported in the brackets.
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(a) (b)

(c) (d)

Figure C.1: Convergence of the parameter estimation error ‖θn − θ?‖ and coverage rates v.s. the

sample size n when d = 20 and Σ is in the equicorrelation design. Plots (a) to (b) show the cases

of linear regression and plot (c) to (d) show the cases of logistic regression. Dashed lines in plots

(b) and (d) correspond to the nominal 95% coverage.
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d Pv Estimation error Average coverage rate Average length

Parameter Plug-in Cov Plug-in Oracle Plug-in Oracle

0.0031 0.0384 0.9448 0.9436 1.7555 1.7533
(I)

(0.0010) (0.0106) (0.1035) (0.1040) (0.0082) -

0.0030 0.0406 0.9472 0.9456 1.7556 1.7533
(S)

(0.0009) (0.0088) (0.0976) (0.0984) (0.0075) -

0.0036 0.0623 0.9440 0.9432 2.0780 2.0745

5

(G)
(0.0011) (0.0151) (0.1061) (0.1087) (0.0166) -

0.0135 0.1126 0.9319 0.9288 3.5337 3.5065
(I)

(0.0023) (0.0190) (0.0594) (0.0616) (0.0164) -

0.0135 0.1103 0.9306 0.9281 3.5348 3.5065
(S)

(0.0021) (0.0128) (0.0575) (0.0614) (0.0168) -

0.0141 0.1273 0.9308 0.9283 3.7100 3.6777

20

(G)
(0.0022) (0.0180) (0.0572) (0.0571) (0.0213) -

0.0748 0.5707 0.9309 0.9012 8.6675 7.8397
(I)

(0.0062) (0.0648) (0.0261) (0.0336) (0.1081) -

0.0750 0.5348 0.9310 0.8990 8.6814 7.8398
(S)

(0.0059) (0.0401) (0.0243) (0.0323) (0.1001) -

0.0757 0.5548 0.9312 0.8990 8.7837 7.9178

100

(G)
(0.0058) (0.0441) (0.0238) (0.0321) (0.1042) -

Table C.3: Comparison among different direction distributions Pv (Detailed specification of

(I),(S),(G) can be referred to Section 3.1). We consider the linear regression model with identity

covariance design, and the (AKW) estimators are computed based on the case of two function queries

(m = 1). Corresponding standard errors are reported in the brackets.
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d Pv Estimation error Average coverage rate Average length

Parameter Plug-in Cov Plug-in Oracle Plug-in Oracle

0.0035 0.0342 0.9428 0.9412 2.0109 2.0078
(I)

(0.0012) (0.0092) (0.1096) (0.1102) (0.0097) -

0.0034 0.0348 0.9464 0.9456 1.9664 1.9636
(S)

(0.0012) (0.0082) (0.1051) (0.1070) (0.0095) -

0.0040 0.0535 0.9464 0.9460 2.3274 2.3233

5

(G)
(0.0014) (0.0145) (0.1117) (0.1119) (0.0184) -

0.0172 0.1124 0.9194 0.9170 4.3140 4.2753
(I)

(0.0029) (0.0199) (0.0644) (0.0656) (0.0207) -

0.0170 0.1116 0.9182 0.9165 4.2769 4.2374
(S)

(0.0028) (0.0126) (0.0602) (0.0608) (0.0212) -

0.0177 0.1278 0.9216 0.9188 4.4885 4.4443

20

(G)
(0.0029) (0.0167) (0.0598) (0.0610) (0.0264) -

0.0921 0.5615 0.9331 0.9044 10.7701 9.7508
(I)

(0.0076) (0.0647) (0.0250) (0.0320) (0.1400) -

0.0927 0.5445 0.9323 0.9000 10.7712 9.7318
(S)

(0.0072) (0.0487) (0.0240) (0.0321) (0.1358) -

0.0933 0.5668 0.9336 0.9026 10.8925 9.8286

100

(G)
(0.0073) (0.0597) (0.0243) (0.0321) (0.1403) -

Table C.4: Comparison among different direction distributions Pv (Detailed specification of

(I),(S),(G) can be referred to Section 3.1). We consider the linear regression model with equicor-

relation covariance design, and the (AKW) estimators are computed based on the case of two function

queries (m = 1). Corresponding standard errors are reported in the brackets.
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m; Σ Pv Estimation error Average coverage rate Average length

Parameter Plug-in Cov Plug-in Oracle Plug-in Oracle

0.0221 0.2176 0.9274 0.9221 2.5225 2.4791
(I+WOR)

(0.0017) (0.0079) (0.0265) (0.0274) (0.0078) -

0.0233 0.2262 0.9251 0.9192 2.6366 2.5883
(I+WR)

(0.0017) (0.0101) (0.0259) (0.0269) (0.0081) -

0.0232 0.2257 0.9277 0.9222 2.6372 2.5883

10; Identity

(S)
(0.0017) (0.0081) (0.0255) (0.0270) (0.0080) -

0.0275 0.2210 0.9258 0.9206 3.1104 3.0554
(I+WOR)

(0.0019) (0.0083) (0.0264) (0.0270) (0.0099) -

0.0285 0.2291 0.9270 0.9210 3.2535 3.1926
(I+WR)

(0.0020) (0.0097) (0.0258) (0.0273) (0.0106) -

0.0285 0.2299 0.9291 0.9229 3.2487 3.1868

10; Equicorr

(S)
(0.0019) (0.0084) (0.0248) (0.0255) (0.0107) -

0.0067 0.1189 0.9405 0.9395 0.7909 0.7882
(I+WOR)

(0.0005) (0.0034) (0.0287) (0.0285) (0.0020) -

0.0093 0.1686 0.9407 0.9393 1.1130 1.1059
(I+WR)

(0.0007) (0.0055) (0.0240) (0.0240) (0.0029) -

0.0093 0.1683 0.9410 0.9389 1.1130 1.1059

100; Identity

(S)
(0.0007) (0.0054) (0.0231) (0.0232) (0.0030) -

0.0076 0.1183 0.9375 0.9364 0.8800 0.8770
(I+WOR)

(0.0006) (0.0033) (0.0264) (0.0270) (0.0023) -

0.0111 0.1727 0.9378 0.9361 1.3141 1.3054
(I+WR)

(0.0008) (0.0061) (0.0253) (0.0257) (0.0036) -

0.0110 0.1722 0.9399 0.9383 1.3126 1.3040

100; Equicorr

(S)
(0.0008) (0.0056) (0.0231) (0.0235) (0.0036) -

Table C.5: Comparison among different sampling schemes for multi-query algorithms under linear

regression model with dimension d = 100 and m = 10, 100, respectively (Detailed specification of

(I+WOR),(I+WR),(S) can be referred to Section 3.1). Corresponding standard errors are reported

in the brackets.
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(a) (b)

(c) (d)

Figure C.6: The parameter estimation error and the relative covariance estimation error (see (24))

for multiple function-value evaluations. The x-axis is the number of function evaluations per step

(i.e., m+ 1). Here, we consider the linear regression model with n = 105 and d = 100. Plots (a) to

(b) show the case of identity covariance matrix and plots (c) to (d) show the case of equicorrelation

covariance matrix.
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(a) (b)

(c) (d)

Figure C.7: The parameter estimation error and the relative covariance estimation error (see (24))

for multiple function-value evaluations. The x-axis is the number of function evaluations per step

(i.e., m+1). Here, we consider the logistic regression model with n = 105 and d = 100. Plots (a) to

(b) show the case of identity covariance matrix and plots (c) to (d) show the case of equicorrelation

covariance matrix.
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C.1 Numerical Experiments on Non-smooth Loss Function

In this section, we provide simulation studies to illustrate the performance of our (AKW) estimator as

well as our inference procedure, i.e., the plug-in covariance estimator and the fixed-b HAR inference,

on quantile regression. Our data is generated from a linear regression model,

yi = x>i θ
∗ + εi,

where {ζi = (xi, yi), i = 1, 2, . . . , n} is an i.i.d. sample of ζ = (x, y) with the covariate x ∼ N (0,Σ)

and the noise {εi} follows an i.i.d. normal distribution such that

εi ∼ N (−σΦ−1(τ), σ2), Pr (εi ≤ 0 | xi) = τ.

Here Φ(·) is the cumulative density function of standard normal distribution and Φ−1(·) is its

inverse function. For each quantile level τ ∈ (0, 1), the individual loss is f(θ; ζ) = ρτ
(
y − x>θ

)
,

where ρτ (z) = z (τ − 1{z < 0}).

From Theorem A.4, we know that the (AKW) estimator of the above quantile regression model

is asymptotically normal with asymptotic covariance matrix H−1QH−1 and

H =
1

σ
φ(Φ−1(τ))E[xx>] =

1

σ
φ(Φ−1(τ))Σ,

S = τ(1− τ)E[xx>] = τ(1− τ)Σ.

Here S is the matrix used to construct Q under different sampling direction (see Proposition 3.5).

For example, if we sample uniformly from the canonical basis with two function queries (m = 1),

then Q(I) = ddiag(S).

In the numerical experiments below, we fix sample size n = 105, dimension d = 20, and the

noise variance σ2 = 0.2. We consider two different covariance structure for Σ: identity matrix Id

and equicorrelation covariance matrix, i.e., Σk` = 0.2 for all k 6= ` and Σkk = 1. We present our

results below in Table C.8 with three quantile level τ = 0.1, 0.5, 0.9. As can be inferred from the

table, plug-in estimators have a good coverage rate closed to the oracle ones. Our fixed-b HAR

inference structure provide coverage around 90% under a much faster speed and no additional

function queries condition.
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τ Σ Estimation error Average coverage rate Average length

Parameter Plug-in Cov. Plug-in Fixed-b Oracle Plug-in Fixed-b Oracle

0.0578 0.2223 0.9390 0.9040 0.9470 15.6048 18.6994 14.9837
Identity

(0.0090) (0.0403) (0.0605) (0.0714) (0.0581) (0.1278) (2.5821) -

0.0726 0.2281 0.9245 0.8935 0.9405 19.0581 21.0679 18.2687
0.1

Equicorr
(0.0120) (0.0385) (0.0634) (0.0726) (0.0578) (0.1667) (2.5188) -

0.0387 0.0493 0.9500 0.9180 0.9495 10.9806 13.0493 10.9858
Identity

(0.0062) (0.0116) (0.0510) (0.0585) (0.0517) (0.0249) (1.4260) -

0.0464 0.0511 0.9470 0.9100 0.9515 13.3991 15.5384 13.3943
0.5

Equicorr
(0.0082) (0.0110) (0.0529) (0.0612) (0.0526) (0.0320) (1.9022) -

0.0536 0.1993 0.9415 0.8995 0.9475 15.3729 16.4834 14.9837
Identity

(0.0086) (0.0422) (0.0512) (0.0630) (0.0471) (0.1179) (1.8594) -

0.0652 0.1963 0.9460 0.9020 0.9505 18.8055 19.7132 18.2687
0.9

Equicorr
(0.0105) (0.0399) (0.0569) (0.0663) (0.0502) (0.1387) (2.2770) -

Table C.8: Estimation errors, averaged coverage rates, and average lengths of the proposed al-

gorithm with search direction (I) and two function queries (m = 1), under quantile regression

model. Sample size n = 105, dimension d = 20. Corresponding standard errors are reported in the

brackets. We compare the plug-in covariance estimator (plug-in) based inference (17) and fixed-b

HAR (fixed-b) based inference (22).
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