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The singular value decomposition of a linear operator F' takes two well-known forms: As a sum of
separable linear operators
F=o01u1 ®vi +02us QuUa + -+ - + 0,Ur @ Uy (1)

or a composition of three structured linear operators

F=UxV".
These are of course equivalent for linear operators but when F' is a nonlinear operator, an additive
model
F=fitfot -+ [ (2)
and a compositional model
F:FloFQO"'OFS (3)

would produce vastly different results. The traditional approach taken towards the approximation,
interpolation, or regression of a target function in approximation theory, harmonic analysis, ma-
chine learning, signal processing, statistics, etc, are mainly variations of the additive model in (2).
Nevertheless the deep neural network revolution and transformer revolution have now brought the
composition model (3) to the fore.

If selected, our tutorial will discuss why the many admirable innovations with the additive model
(2) such as

e compressed sensing: ensuring r is small through sparsity or low-rank;
e kernel methods: linearizing (2) to (1) through embedding in feature space;
e tensor networks: imposing separability on f;’s and graph structures on the sum in (2);

e wavelets: exploiting multiscale and localization properties of F' in (2);

and more, have all fallen short to overcome the curse-of-dimensionality. We will then discuss how
the compositional model (3) provides a remarkably effective way to alleviate the curse.

We hold the opinion that this simple idea of replacing sums by compositions is, more than anything
else, the key to the phenomenal success of recent Al models. While we have alluded to this briefly
in [3], in the proposed tutorial we will elaborate in greater detail and furnish more examples to
make this point.

The example of splines serves as a fitting illustration. Traditionally, a vector-valued spline F :
R™ — R™ of degree d is regarded simply as

F=¢&1Ia, + &4+ + &la,, (4)
where &1,...,& € Rlzy,...,z,] are polynomials of degree d and
R =AU ---UA, (5)



a partition of the domain (here 14 is the indicator function on A). This is the picture of splines in
the additive model (2).

In the case of linear splines, i.e., d = 1, the work of Arora et al [1] established that a ReL.U-activated
[-layer feed forward neural network is nothing more than a picture of splines in the compositional
model (3):

F(%) = Al+1UlAl cee O‘QAQO‘lAll‘ (6)

for any input x € R", weight matrix A; € R"*"-1 ny=n and n;4+1 = m,
oi(z) = ReLU(z + b;)

with bias vector b; € R™. The activation ReLU(z) := max(z,0) is always applied coordinatewise
when its input is a vector or a matrix. In other words, for d = 1, neural networks are exactly linear
splines and vice versa.

We extended this work to splines of higher degree in [3]. Since neural networks are linear splines,
compositions of neural networks just give neural networks with more layers and they remain linear
splines. So one needs a new element in order to obtain splines of higher degree. We showed that the
attention module in (7) fulfills such a role and is all one needs to generate splines of arbitrarily high
degrees as compositions. In other words, for higher values of d, transformers are exactly splines of
degree d and vice versa with one caveat.

A ReLU-activated attention module [4] is a map between matrix spaces defined by a : R"*P —
Rmxp,
a(X) = V(X)ReLU(K (X)"Q(X)), (7)

where Q : R"*P — RIXP_ [ : R™*P — RIXP_ |/ : R"*P — R™*P are given by affine maps
Q(X):AQX+BQ, K(X)=AxX + Bg, V(X)= Ay X + By,

with weight matrices Ag, Ax € RI¥X" Ay € R™*" and bias matrices Bg, Bk € RIXP_ By, € R™*P,

It is not difficult to see that « is a cubic spline, in the sense of a function defined piecewise by cubic
polynomials (we will describe how to obtain differentiability in this context later). Let ¢ denote
a neural network (6) applied to a matrix X € R™*P columnwise to each of the p columns of X.
So ¢ : R™*P — R™*P. We showed in [3, Section 3.1] that when attention modules are alternately
composed with neural networks as in the encoder of a transformer

Et=Pto0roPr_10Qt_1°---0°pP10oQy,

we obtain a spline of degree 3¢. Furthermore, the same applies to the decoder of a transformer

65:8050580908—1Oﬁs—l°"'°@1°61;

where the attention modules «;’s are replaced by so-called masked attention modules 5;’s, which
are essentially “upper triangular” analogs of attention modules. Finally, a transformer constructed
out of a t-layer encoder and s-layer decoder is then a spline of degree 3/7% 43! —3%. We also showed
that the converse — every spline can be represented as a transformer — holds true if and only if
the Pierce-Birkhoff conjecture holds true [3, Section 3.3]; and we recently proved enough of this
conjecture to show that as long as the partition in (5) is piecewise linear (i.e., A;’s are polyhedra),
then a spline of any degree on such a partition is a transformer.

The observations in the previous paragraph lead to several insights:



(i)
(i)

(iii)

A transformer is a spline F' written in the compositional form (3).

Expressing a spline as a composition affords a straightforward way to impose differentiability
to any desired degree, namely, by replacing the C? activation ReLU with any C* activation.
Indeed, if we use the C'* activation SoftMax as in the original paper [4] where the transformer
architecture was proposed, we obtain a “smoothed spline,” impossible in the traditional way
of constructing a spline.

Most importantly, this compositional form allows one to generate splines of exceeding high
degrees that cannot be realistically represented in the traditional additive form (4) because
of curse-of-dimensionality. For example, even the most rudimentary transformer in [4] has
s =t = 6, which produces a spline of degree 531,441. The transformer in OpenAl’s GPT
likely uses far higher values of s and ¢. The earliest version of Google’s BERT [2] involves an
encoder with s = 24, which produces a spline of degree exceeding 280 billion.

It is safe to say that splines of such insanely high degree have never before been used in any
application before the appearance of transformers. We posit that therein lies the real novelty of
the transformer technology.

If selected, our tutorial will also survey more recent works where we applied the same insights to
functions traditionally written in an additive form (2) with atoms f;’s such as wavelets or sinusoids
to construct transformer-like models by expressing them in a compositional form (3).
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