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1. INTRODUCTION
Let d < n be positive integers and let (ni,...,n4) be a sequence integers such that 0 < n; <

- < ng < n. We denote by Flag(ni,...,ng;R™) the set of all flags in R™ of type (ni,...,nq):

Flag(ni,...,ngn) = {{Vk}zzl Ve SV SR dimVy =ng,k=1,...,d— 1}.

2. PRELIMINARIES

2.1. differential geometry of Grassmann manifolds. Let k < n be positive integer. We denote
by Gr(k,n) the Grassmann manifold of & dimensional subspaces of R™. According to [4], Gr(k,n)
can be characterized as a submanifold of O(n) NS, i.e.,

Gr(k,n) ~{Q € O(n) NS, : tr(Q) = 2k — n}
= {VIini V' :V€O(n)}.

(1)
(2)

. . . . . !
Here S,, is the space of n x n symmetric matrices and I, ,,— is the diagonal matrix [Ok IO ] .
—in—k
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Proposition 2.1 (Tangent space I). Let @ € Gr(k,n) with eigendecomposition Q = VIj V.
The tangent space of Gr(k,n) at Q is given by

Tgo Gr(k,n) = {X e R”": X' =X, XQ+ QX =0, tr(X) =0} (3)
:{VLST ﬂ VTeR”X”:BeR’fXW—’f)} (4)
= {QV [_OBT ]03} VIeR™™: B¢ ka(n—’f)} : (5)

Proposition 2.2 (Riemannian metric). Let Q € Gr(k,n) with Q@ = VI,V and

0 B 0 C
X=V [BT 0] Vi, Y=V [CT 0} VT e Tg Gr(k,n).
Then
(X,Y)g =tr(XY) =2tr(B"C) (6)
defines a Riemannian metric. The corresponding Riemannian norm is
1Xlle = VX, X)o = | X]le = V2| Bl (7)
Theorem 2.3 (Geodesics I). Let Q € Gr(k,n) and X € Tq Gr(k,n) with
0 B
Q=VIn iV, X=V [BT O] VT (8)
The geodesic v emanating from @ in the direction X is given by
B tfo —-B tT 0 Bl\.-
s =vew (5|5 7|) v (5| 5 o)) )
The differential equation for =y is
YA =5 (@) =0,  (0)=Q,  (0)=X. (10)
Proposition 2.4 (Parallel transport). Let Q € Gr(k,n) and X,Y € Tg Gr(k,n) with

Q=VIn V', X=V [g ﬁ’] VT, Y=V [CO g] iad

where V € O(n) and B,C € REX(=K) " Let ~ be a geodesic curve emanating from Q in the direction
X. Then the parallel transport of Y along =y is

Y () = V exp <; BT _OBD [COT ﬂ exp <; [_%T jOBD VT (11)

2.2. some useful functions. We recall the Peano—Baker series associated to a matriz function ® :
la,b] — R™ ™. To define the Peano-Baker series, we first recursively define a sequence { My, (t)}72,
of matrix functions

My(t) = 1,
My (t) = In+/t<1>(s)Mk_1(s)d8, k e N.

We have the following:

Theorem 2.5. [2, Section 3, Theorem 1] The sequence {My(t)}32, converges to a matriz function
M (t) uniformly on |a,b], which solves the differential equation

d
%X(t) = (I)(t)X(t), X(a) =Iy.
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In particular, given any column vector u € R™, M (t)u solves the differential equation

d
ax(t) =o(t)x(t), =z(a)=u.

The limit matrix function M (¢) in Theorem 2.5 is defined to be the Peano—Baker series associated
to ®(t).

2.3. vectorization of a matrix. Let m,n be positive integers and let Alaq,...,a,] be a matrix
of size m x n where aq,...,a, € R™ are column vectors of A. We define the vectorization of A to
be the column vector
ay
vec(A) == | 1 | e R™".
Gnp,

We recall that using vectorizations of matrices, we can express the matrix-matrix product in terms
of matrix-vector product. Namely, for A € R™*™ and B € R™*!, we have

vec(AB) = (I; ®A) vec(B) = (BT ® I;,) vec(A). (12)

(m,n) c Rmnxmn

Moreover, for any positive integers m,n, there exists a permutation matrix K ,

called the commutation matriz such that
KM yec(A) = vec(AT), A e R™" (13)

3. SUB-RIEMANNIAN GEOMETRY OF FLAG MANIFOLDS WITH CLASSICAL EMBEDDINGS

According to [5, Proposition 3.2], Flag(ni,...,ng4;n) can be embedded into a product of Grass-
mann manifolds via

¢ : Flag(ni,...,ng;n) = Gr(ni,n) x Gr(ng —ni,n)--- x Gr(ng — ng_1,n)
{Viioy) — (W1, Wa, ..., Wy). (14)

Here Wy = V; and Wy, is the orthogonal complement of Vi_q in Vi, k = 2,...,d. For simplicity,
we denote

‘ml::nl, May1 =N —Ng, Mg =Nk — Nk_1, k:2,...,d‘ (15)

so that ¢ is an embedding of Flag(ng,...,ng;n) into H‘,ﬁzl Gr(myg, n).

3.1. an embedding of a flag manifold into a matrix manifold. By (1), we may also embed
each Gr(myg,n) into O(n) and hence we can write Wy, in (14) as Vi, Ln, n—m, V) for some V}, € O(n).
We denote by 7 the induced embedding of Hizl Gr(myg,n) into O(n)%. In the following, we will
explicitly characterize the image 7 o ¢ (Flag(ny,...,ng;n)) in O(n)?.

Proposition 3.1 (embedding). The image of the embedding

e : Flag(ni,...,ng;n) < H Gr(myg,n) N H O(n) (16)
k=1 k=1
s given by
d
e (Flag(ny,...,ng;n)) = {(Q1,...,Qq) € H O(n) : tr(Qr) = 2my — n, Qf = Qk
k=1

In particular, we also have

e (Flag(ny,...,ng;n)) ={(VI,V',...,VI; V) : V € O(n)}, (18)
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where J, = diag(— Iy, -+ s — Ly Iy — Ly s = Imgs — I,—n,) is obtained by permuting di-
agonal blocks of L, n—m,, -

Proof. According to (1), we must have e({R2}4_ ) = (Q1,...,Qq) € (O(n)NS,) with rank Qy =
2my, —n. Moreover, since Wy, is perpendicular to W1, we must have Py, o Py, , = 0 where Py is
the orthogonal projection from R™ onto a subspace U. Now by [4, Proposition 2.3], we have Py, =
(L, +Qy) which proves (17). To see (18), we notice that the relation (I, +Q)(In +Qg+1) = 0
implies that QrQx+1 = Qr+1Qk and hence there exists Vp € O(n) diagonalizing Qs simultaneously,
ie., Qr = VoD Vy where Dy, is a diagonal matrix with mj —1’s and (n —my,) 1’s along its diagonal.
The restriction (I,, +Qk) (I, +Qr+1) = 0 forces Dy = o' Jyo for some permutation matrix o and
hence V := oVj gives us the desired expression of e({R7}{_,) in (18). O

In fact, (18) is a special case of the general fact [3, page 384] that G/P is an adjoint orbit of
G if P is a parabolic subgroup of a semi-simple Lie group G. In our case, we have G = O(n) and
P =0(n1) x -+ x O(ng) so that G/P ~ Flag(ny,...,ng;n).

Due to Proposition 3.1, in the sequel we abuse the notation by also using Flag(ni,...,ng;n) to
denote € (Flag(ni,...,ng;n)). Accordingly, an element in Flag(nq,...,ng;n) is written as a d-tuple
(VAVT VIV =V (Jy,..., gV’

for some V € O(n), where m; = ny and my = ng —ni_1 for k=2,...,d.

3.2. tangent space, Riemannian metric and normal space. We first consider the tangent
space of Flag(ni,...,ng;n) at a point V' (Jy,..., Jd)VT. To do this, we take a curve V(¢) on O(n)
such that V(0) = V. It is clear that A = V(0)"V(0) € so(n) and hence the tangent vector
determined by the curve V(¢)(J1,...,Jq)V ()" is simply
V(0)(J1s- .., J)V(0) +V(0)(J1, ..., Jg)V(0)T
which can be further written as

V() (A(J1y. ey dg) — (J1, ..., J)AN) V(0)T.

We partition A as A = (A(p, q));‘fgl:l where A(p, q) is a my, xm, matrix such that A(q,p) = —A(p,q)".
This implies that

T 0 - 0 Ak, 1)T 0 0 7
0 - 0 Ak, k—1)" 0 0
Ay — Jeh = =2 |A(k,1) -+ Ak, k—1) 0 Ak k+1) - Ak,d+1)|. (19)
0 .- 0 Ak, k+1)7 0 0
o0 - 0 Ak, d+1)7 0 0 |

We notice that there is a natural identification H1<j<k<d+1 R™3i*™Mk ~ go(n) and hence we have an
injective map

d
. 1
w : H R™3 XMk ~ 50(77,) — H Sn, w((Ajk)1§j<k§d+1) = 5(‘/L]' — JA)7
7=1

1<j<k<d+1
where J = (Ji,...,Jq) and A € so(n) is the skew-symmetric matrix uniquely determined by
(Ajr)1<j<k<d+1- The above calculations can be summarized as the following
Proposition 3.2. Given a point §f == V(Jy,...,Jg)V" € Flag(ni,...,ng;n), the tangent space of
Flag(ni,...,ng;n) at f is
T Flag(ni, ..., na;n) = V{1 ((Ajk)i1<jrcdrr) : Ajp € R 1< j <k <d+1} VT
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In other words, TjFlag(ny,...,ng;n) consists of vectors V(Xy,...,Xg)VT € H?Zl Sn satisfying

Xk(k7l) = _Xl(kal)7Xk(p7Q) = O’Xk(k’k) =0, 1<k1<d1< Dq < d+1 and b, Q)l 7é k.
(20)
Here for each 1 < s,t < d+ 1, Xi(s,t) € R™s*™ denotes the (s,t)-th block of Xj € S, when we
partition Xy with respect ton =mq +---+mg+ mqgr1.

Due to Proposition 3.2, we are able to parametrize a curve on Flag(ni,...,ng;n) easily.

Corollary 3.3 (curves). If ¢ : (—e,e) — Flag(ny,...,ng;n) is a differentiable curve such that
c(0) = V(Ji,...,Jq)VT, then there exists a differentiable curve A : (—e,€) — so(n) such that
Ak,k)(t)=0,k=1,...,d+ 1 and

c(t) = Vexp(A(t))(J1,. .., Jq) exp(—=A(t)) VT,
where A(t) = (A(y, k:))dJrl I s the partition of A(t) with respect ton =mj + -+ + mgy1.

As a submanifold of szl Gr(mg, n) (or equivalently, Hizl O(n)), Flag(ni,...,ng4;n) is equipped
with an induced Riemannian metric:

d
(V(X1, . X VT,V (Y, Y V)= > (X Y5), (21)
k=1

where f = V(J1,...,Jg)VT is a point in Flag(ni,...,ng;n) and V(Xq,..., Xg)V", V(Y1,..., Yy VT
are tangent vectors of Flag(ni,...,ng;n) at f. More explicitly, we can write

d
(V(X1, o XV, V(Y YV =2) 0 > (X5 (L B)Ya(k, 1) + Xi(m, B)Yi(k,m)). (22)
k=1Il<k<m

We remark that summands in the formula (22) are not evenly counted. For example, if d = 2, then
(V(X1, X2)VT, V(Y1,Y2)VT)s is

2(tr(X1(2, 1)Y1(1,2)) + tr(X1(3, 1)Y1(1,3)) + tr(X2(1,2)Y2(2,1)) + tr(X2(3,2)Y2(2,3))),  (23)

in which the coefficient of tr(X(2,1)Y1(1,2)) is 4 since tr(X2(1,2)Y2(2,1)) = tr(X:1(2,1)Y1(1,2))
while coefficients for the other two summands are both 2.
For each @ € O(n), we have Tg O(n) = @so(n) and hence for each (Q1,...,Qq) € szl O(n),

we obtain

d d
Tiq1,...Qu) (H ) = @ Quso(n)
k=1

To calculate the normal space of Flag(ni,...,ng;n) in szl O(n) at § = V(J1,...,Jg9)VT, we
need to determine Y,...,Yy € so(n) such that YV = (VJ1VTY,...,VJ;VTYy) is perpendicular
to T Flag(ni, ..., ng;n), i.e., (X,Y);0@,) = 0 for all X € T;Flag(ni,...,ng;n). Here the inner

product (., '>f1_lﬁ_10(n) is the canonical Riemannian metric on HZ:I O(n) at the point f, which
induces (21). We notice that for X = V(X1,...,Xg)V' € Tj Flag(ny, ..., ng;n)

VXV = VIV VLXVT, k=1,....d,
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which implies that

(X,Y) (VI X VT)Y)

d
T, om) = 2 tr((

k=1
d

:Z r((VXpJiVT)Ys)
k=
d
Z (X JR)VTYV)
k=

Since (X, Y)f I, o) = 0 holds for any X € T Flag(nl, ...,ng;n), we can equivalently write this
condition as -

d
Ztr((Xka)Zk) =0, (Xi,...,Xq) € Ty, Flag(n1,...,ngn),
k=1

where fo = (J1,...,Jq) € Flag(ni,...,ng;n) and Zp, = V'Y,V k= 1,...,d. If we fix a pair (k,1)
such that 1 <k <d,1 <1<d+ 1,k # [ and set X,,,(p,q) = 0 for
(. s ) & {(K, K, 1), (ks 1, ), (1 e 1), (11, )}

then since X}, Jm, n—m, is skew-symmetric, we have

0= (X, Y11 ot = tr(Xk(E, D Zu(L, k) — tr(Xe(k, 1) Zi(k, 1)) — tx(Xu(k, 1) Zi(k, 1)) + (X (k, D Zi(1, K)
tr( Xk (k, 1) (Ze(1, k) — Zi(1, k))) — tr(Xk(k,l)T(—Zk(k,l)) + Zi(k, 1))
tr (X (k, 1) (Zi (1, k) — Zu(1, K))) + tr(Xk (k, 1) (Zi (K, 1) — Zu(k, 1))
2 60(Xa (k, 1) (Zr (1, k) — Zi(L, k))).

Therefore, we may derive the following characterization of NjFlag(ni,...,ng;n):

Proposition 3.4. At a point § = V(Ji,...,Jy)V" € Flag(ni,...,ng;R™), the normal space
Nj Flag(ni,...,nqg;n) consists of vectors

(VILZ VT,V JgZgVT)
where Z1,...,Zq € so(n) satisfy the relations
o Zi(k,l)— Zi(k,1) =0 for all1 <k #1<d.
o Zp(k,d+1)=0,Zk(d+1,k) =0 for all 1 < k < d.

In particular, we have a decomposition

d
N; Flag(n1,...,ngn) = Nj <H Cr(my, n)) P~ (24)
k=1
where Nj (Hi:l Gr(my, n)) = szl NV Ty, VT Gr(mg,n) and
N = {(VJmyn-m 21V, o, Viign-ma ZaV") : Zy, € s0(n), Zy,(k,1) — Zy(k,1) =0,
Zi(k, k) =0,Zk(p,q) =0, Zy(k,d+1) =0, Zp(d+1,k) = 0,1 < k,1 < d,1 <p,q < d+1,p,q # k}.

(25)
We recall that Flag(ni,...,ng;n) can also be embedded into szl Gr(ng,n) as a Riemannian
submanifold. Hence we may also characterize the normal space of Flag(ni,...,ng;n) with respect

to this embedding.

Corollary 3.5. The normal space of Flag(ni,...,ng;n) in ngl Gr(myg,n) at a point | is N?.
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Proposition 3.6 (Projections). Projections from T; (szl O(n)) onto Ty Flag(ny,...,ng;n)
NjFlag(ni,...,nq;n) are respectively given by

d

proj;r : T <H O(n)) — Ty Flag(ny,...,ngn)
k=1

V(JlAl, cey JdAd)VT — V(Xl, R ,Xd)VT.

and
d
proj?I : T (H O(n)) — NjFlag(ni,...,ng;n)

k=1
V(JlAl, ey JdAd)VT — V(Zl, RN Zd)VT

7

and

(26)

(27)

where for each k = 1,...,d, Xp € S, (resp. Zj, € R™") is partitioned as (X(p,q))%TL, (resp.

P,q=1
(Zk(p, q))gj;l:l) with respect ton =my + -+ mgy1 and
Ag(k,d+1), ifp=Fk,g=d+1
Xi(p,q) = § —5(Ai(p, k) — Ap(p, k), ifg=k#p<d
_Ak(d+17Q)> ifq=k,p=d+1

0, otherwise.

3(Me(k,q) + Ag(k.q), ifp=k#q<d
0, fp=kg=d+1

Zi(p,q) = § —3(Mk(p, k) + Ap(p, k), ifq=k#p<d
0, ifg=k,p=d+1

Ak(p,q), otherwise.

Before we proceed, we work out the case for d = 2 to exhibit our calculations above. In

this

case, our flag manifold is Flag(ni,ng;n) and hence my = ny, ms = ng — ni,m3 = n — ng. A point

f in Flag(ni, ng;n) is written as

Im1 0 0 - Iml 0 0
VI, L)V =VI| | 0 -1, 0 |,| 0 I, 0 V', VeO(n).

A tangent vector of Flag(ni,n2;n) at f is of the form
0 A B 0 -4 0

v AT 0 0 ’ AT 0 C VT, AEleme,BGlexm3,C€Rm2xm3_
B™ 0 0 0 cCT 0
The normal space of Flag(ni,na;n) as a submanifold of O(n) x O(n) at § consists of vectors
X Y 0 R Y S
v9i|lyr zZ Ww|,|Y" T 0 VT,
0o -w' U -ST 0 K

where X, R € so(my), Z,T € so(ma), U, K € so(ms), Y € R™M>*M2 JJ/ ¢ R™M2XM3 G ¢ R7M1xM3,
A tangent vector £ of O(n) x O(n) at f can be written as

A B C X Y Z
&=V | |B" D E|,|Y"T W S||V,
ct —-ET F -zt ST T
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where A, X € so(my),D,W € so(ms),F,T € so(ms3),B,Y € R™*™2 C/ 7 € R™M*™ E S €
R™2%m3 - The projection of { onto Tj Flag(ni, ng;n) is

0B )T 0 -BY g
projf () =V | [EX2 o o, |- o g |V
cT 0 O 0 ST 0
and its projection onto NjFlag(ny,ng;n) is
A BtY X BtY »
-N _ BT+YT 2 BT+YT 2 T
0 —-E" F 77 0 T

The normal space N?' of Flag(ni,ng;n) as a submanifold of Gr(mq,n) x Gr(mg,n) at f consists of
vectors
0 Y O 0 Y 0
VIIY"™ 0 of,|Y"T 0 O VT Y e RmM>m2,
0 0 0 0 0 0

We also recall that the tangent space Tj(Gr(m1,n) x Gr(mg,n)) consists of vectors

0 A B 0 D O
vI|AT 0 0], |DT 0 C| |V, VeOm),ADeR™™ B e RN C e R,
BT 0 0 0 C" 0

The following identities can be directly verified by the above computations.
T (O(n) x O(n)) = T; Flag(ny, no;n) @Nf Flag(ni, no;n),
Ts(Gr(my,n) x Gr(mz,n)) = T;Flag(ni, ng;n EBNO

3.3. geodesics. Recall that we may parametrize a curve ¢(t) on Flag(ni,...,ng4;n) as
c(t) =V({t)(Jr,...,Ja)V (1),

where V(t) is a curve in O(n). By differentiating the equation V' (t)"V (t) = I,,, we obtain
V()V(t)+ V(t)V(t) =0,

from which we may write V (t) as

V(t) = V(H)A(®),
for some A(t) € so(n). According to Proposition 3.2, we may further partition A(t) as
AW = (A5t

with respect to n =mj +---+mgq1 and Ag(t) =0,k =1,...,d+ 1. Hence the second derivative
of ¢(t) is
) =V () (Ar(t), ..., Aq(®) V()T
where
AR(t) = (A@#)J, — JeA®)) + (A2(0) i + JeA2()) + (=2A () JA®)), k=1,....d. (28)
We may rewrite ¢(t) as
é(t) =Ti(t) +Ta(t) — 215(1)
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where T}(t) is the j-summand of V(t) (A1(t),...,Aq(t)) V(t)" with respect to the decomposition
of Ag(t) given in (28). More precisely,

Ti(t) = V(&) (A@)J1 = JA®), .., A(t) g — JaA))V ()T, (29)

To(t) = V(&) (A2(t)J1 + JiA% (), ..., A2(t) Jg + JaA2 () V()T (30)

Ts(t) = V() (A() J1A(L), ..., A(t) JgA () V(E)". (31)
We recall that the geodesic equation on Flag(nq,...,ng;n) is given by

projy ., (é(t)) = 0.

Therefore, to determine the geodesic equation explicitly, we need to compute the projections of
T1(t), Ta(t), T5(t) to Ty Flag(na, . .., ng;n) respectively. From Proposition 3.2, Ti(t) already lies
in the tangent space T, Flag(ni,...,ng;n). Hence it is sufficient to determine the projections of
T5(t) and T3(t).

Lemma 3.7. Let c(t), T2(t) be as above. The projection of projlr(t) (Ta(t)) is zero.

Proof. We first compute A%(t)Jy + JiA%(t) for each k = 1,...,d. To do this, we partition A?(¢)
(resp. Ji) as (I'pq(t)) (vesp. (Jr(p,q))) with respect to the partition n = mj + --- + mgy1 and we
recall that

(20, — 1) I, if g =p,
0, otherwise.

Ji(p,q) = {
Here 6y is the Kronecker delta function. Since A(t) is skew-symmetric, A?(t) is symmetric. We
have I'y, = I'}, .. Now the (p, ¢)-th block of A2(t)Jy, is

m+1
Z Fp,ljk(lv q) = Fp,qu(QaQ) = (25qk - 1)Pp7q
=1

and the (p,q)-th block of JyA2(t) = (A2(t)Jg)" is (20, — 1)Tp . This implies that the (p, g)-th
block of A2(t)Jy + JpA2(t) is
(20k = 1)lpq + (20pk — 1)Tpg = (=2)(1 = dp — 0gi )L q-

In particular, if either ¢ # p = k or p # q = k, we obtain that the (p, ¢)-th block of A%(t)Jj,+ J,A%(t)
is zero and this implies that projg(t) (Ta(t)) = 0. O

Lemma 3.8. Let ¢(t),T5(t) be as before. The projection projf(t) (T5(t)) is
V(t)(Xla s 7Xd)V(t)T

where for each 1 < k < d, Xy is a symmetric matriz whose (p,q)-th block vanishes for any (p,q)

except (k,d+ 1) and (d+ 1,k). Moreover if we partition A(t) as A(t) = [ ZXO((Z))T Alo(t)] where
—\

Ao(t) € so(n —mgy1) and Aq(t) € ROP=mar1)Xm1 e hape
X1(1,d+1)

: = —Ao(t)A1(1).
Xy(d,d+ 1)
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Proof. 1t is sufficient to compute Xy, := A(t)JpA(t) for each k = 1,...,d. We again partition A(t)
as (A(p,q)())e ,_; with respect to n =mq + -+ +mgy1. The (p,q)-th block of A(t)J,A(t) is

p,q=1
d+1 d+1
> Ap, D)) k(1 5) ZA p, D)) Te (DA @) (t)
l,s=1
d+1
=D (20 = AP DAL 9)(0). (32)
=1
In particular, for 1 < g # k < d, the (k, ¢)-th block of A(t)JpA(t) is
d+1
> (260 = DAK, ()AL q)(1),
=1
while the (k, ¢)-th block of A(t)J,A(t) is
d+1
D (26 — DAk DAL g)(8).
=1

Using Proposition 3.6, we may conclude that the (k, ¢)-th block of X} is zero if 1 < k,q < d.
If we take ¢ = d+ 1 and p = k in (32), then the (k,d + 1)-th block of X} is

Xp(k,d+1)=— Y Ak,DEALd+1)().
1<I#k<d

We observe that Xy (k,d + 1) is the k-th block of the product

0 A(L,2)(t) ... A,d—1(@)  A(1,4)(2) AL, d+1)(1)
A(2,1)(¢t) 0 o A2, d 1)) A(2,d)(t) A(2,d+1)(¢)
Ad— L) Ad—L2E) ... 0 Ad— L 0] A varm]
A(d, 1)(t) A(d,2)(t) ... A(d,d—1)(¢) 0 1 Ald,d+1)(¢)
which can be written in a compact form —Ag(t)A1 (). O

By assembling Lemmas 3.7 and 3.8, we can easily derive the geodesic equation on a flag manifold,
from which we can even obtain an explicit formula for the geodesic curve. In fact, we have the
following:

Proposition 3.9 (geodesics). Let c¢(t) be a curve on Flag(ni,...,nqg;n). We parametrize c(t) as
ct)y=V(t)(Jr,...,J))V ()T,
where V(t) is a curve in O(n). We have the following:

(1) There exists a unique A(t) € so(n) such that V(t) = V(t)A(t).
(2) If we partition A(t) as A( ) = (A(p, @) ()19 € s0(n) with respect ton = my+- - +mag1,

pyq=1
then A(p,p)(t) =0,p = yd+ 1.
(3) c(t) is a geodesic curve zf and only if
Ao(t) =0, Ai(t) = Ao(t)A1(2). (33)

where Ao(t) = (A(p, ) (1) gey and Ai(t) = (A(d + 1,q)())g_y-
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(4) The solution to (33) is
Ao(t) = Ao(0), A1(t) = exp(tAo(0))A1(0).
Hence a geodesic curve c(t) is
ct) =V@®)(N,....J)V'(D),
where V (t) is a curve in O(n) written as

V(t) = V(0)exp <t [2((01 ?élb [GXP(BtXO) : 0 (34)

for some Xg € so(n—mgy1) satisfying Xo(k, k) =0,k =1,...,d and X; € RO=mat1)xmat1

md+1

Proof. (1)—(3) and the first half of (4) are obvious from our earlier discussions, hence it is only left
to prove the second part of (4). To that end, we notice that V' (¢) must satisfy the equation

. o XO exp(th)Xl_
V() =V(t) [—XlT exp(—tXp) 0 (35)
and
Xo exp(tXo)X1]  [exp(tXy) O Xo  Xi] [exp(=tXy) 0
— XT exp(—tXo) 0 10 L. |-XT 0] 0 Ty |
If we set W(t) = V(t) [exp(gXo) I 0 ], then (35) becomes
md+1
o 2X, Xi
e =wi |2 ]

whose solution is simply W (t) = W(0) exp (t {2);;(# %1]) = V(0)exp <t [2))?1 )él} > Hence
—Aaq —Aq

V(t) =V(0)exp (t [Ef(% )élb {exp(Bth) : 0 ]

md+1

we obtain that

0

We remark that if d = 1, then Xy = 0 in (34) and a geodesic curve on Gr(ni,n) passing through

VJiVT is
B 0 X o X)) o
c(t) = Vexp (t [_XlT 0 ]) | P < t [_XlT 0 }) v

which coincides with the formula derived in [4].
We again work out the case d = 2 to illustrate the proof of Proposition 3.9. To this end, we
write
0 A(t)  B(t)
A(t) = |—AT(¢t) 0 Ct)|, A(t)eR™>*™2 B(t) e R™>™ (C(t) € RM2*™M3
—BT(t) =C"(t) 0

and suppose that the curve
c(t) = V() (Ji, L)V, V() =V(@)AE), V() eO(n)

is a curve passing through (Jp, J2) with the direction

(A0)J; — JiA(0), A(0)Js — oA(0)) = —2 [ AT 0 0 |,|-4T00) 0o ()
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We write ¢(t) = V(t) (A1(t), A2(t)) V(t)" where
AR(t) = (A()k — JA) + (A2(0) 1 + JA2(0) + (—2A (1) JiA (D).
It is sufficient to compute the projection of A(t)JyA(t) onto Tiq Flag(ni, n2;n), which is

* Bt)C(t)" —A(t)C(t) * B(t)C(t)" *
A(t)J1A(t) = C(t)B(t)" * * , [ C(t)B(t)" * A)'B(t)]| |,
—C(t)TA(t)T * * * B(t)"A(t) *
where * denotes those irrelevant blocks. Eventually, we obtain
0 A@t) B(@t)— A@)C(t) 0 —A(t) 0
proj“j(t>(e(t)) =-2 <[ . A@)T 0 0 } ) [—AT(t) . 0 C@t) + A(t)TB(t)D .
BT —CHTA®T 0 0 0 CWT+ BE)TA®) 0

Hence the geodesic equation for Flag(ni,ng;n) is

A(t)y=0, B(t)—A@t)C(t)=0, C(t)+ A(t)"B(t) =0,

which can be rewritten in a more compact form:

i 28] 0 )28

—en (1] 8 O [29].

4. SUB-RIEMANNIAN GEOMETRY OF FLAG MANIFOLDS WITH MODIFIED EMBEDDINGS

The solution to (36) is

AW =40, |ty

In this section, we discuss the embedded geometry of flag manifolds with respect to a modified
version of the embedding (14). Namely, we define

i:Flag(ny,...,ng;n) < Gr(ni,n) x Gr(ng —ni,n)--- x Gr(ng — ng_1,n) X Gr(n —ng,n)
{Vidamy) = (W1, Wa, ..., Wy, W), (37)

Here Wy, is the orthogonal complement of Vj_; in Vj, for 2 < k£ < d, W; = R} and Wy, is the
orthogonal complement of V; in R™. We observe that

({Vidiz) = (UVidimy), Wap).
In other words, 7 is simply an extension of ¢ by tautologically adding the orthogonal complement
of Vy4. Since ¢ is already an embedding, we may easily conclude that 7 is also an embedding.
Adopting the convention (15), i embeds Flag(ni,...,ng4;n) into H;lg Gr(mj,n). Moreover, by
Proposition 3.1 we have the following:

Proposition 4.1 (embedding). The image of the embedding

_d+1 _
€ : Flag(ny,...,ng;n) — H Gr(mj,n) < O(n)dt! (38)
j=1
s given by
d+1
é(Flag(ni,...,ngin)) = {(Q1,...,Qap1) € [[O(n) : t2(Q;) = 2m; — n, Q] = Q;
j=1

In particular, we also have
¢ (Flag(ny,...,ng;n)) ={V(J1,...,Jgs1)V': V € O(n)}, (40)
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where Jy, = diag(— Ly, s = gy Iy, = Lingirs -+ 5 — Lingyy ) 98 obtained by permuting diagonal
blocks of Ly n—my. k=1,...,d+1 and

V(Jiy ooy dgr) V= (VI VTV g V).
Similarly to Proposition 3.2 and Corollary 3.3, we also have:
Proposition 4.2. Given a pointf =V (J1,...,Ja+1)VT, the tangent space ’IF% Flag(ni,...,ngn)
consists of vectors V(Xi,..., Xg41)VT € Hd+1 Sy, satisfying
Xp(k, ) = =Xi(k, 1), Xr(p,q) =0, Xi(k, k) =0, 1<k,,p,g<d+1 andp,q,l+#k. (41)

Here Xp(s,t) € R™s*™t jg the (s,t)-th block of Xy € S,, when we partition X}, with respect to n =
Z?ﬂ mj. Moreover, a curve c(t) passing through c¢(0) =V (Ji,...,Jay1)V" on Flag(ni,...,ng;n)
can be locally parametrized as

c(t) = Vexp(A(t))(J1,. .., Jar1) exp(—A(2))VT.
For some differentiable curve A : (—e,€) — so(n) such that A(k,k)(t) =

If d = 2, then a tangent vector of Flag(ny, no;n) at f can be written as

0 A B 0 -4 0 0O 0 -B
vil4am o o|,|-4a" o c|,| 0 o -c|]|VvT,
BT 0 0 0o C" ol |-B" —-Cc" o0

where A € lexm2,B c lexm37c € R™M2xms,

4.1. induced Riemannian metric, normal space and projections. As a submanifold of
HdJrl O(n), Flag(ni,...,ng;n) is equipped with a naturally induced Riemannian metric:

dt1
V(X1 Xar) VT, V(Y1 Ya) Vs = Ztr X;Yj) (42)

d+1
=2> " > wr(Xp(l, k)Yi(k, 1) + Xi(m, k)Yi(k, m)).
k=1Il<k<m
Unlike (21) in which some summands are weighted differently, all summands in the new metric
(42) are evenly weighted. For instance, if we take d = 2 then (V (X1, X9, X3)VT, V (Y1, Y2, Y3)VT>¥
is simply
(X0 (2, 1)YA(1,2)) + (X0 (3, 1Y (1,3)) + tr(Xa(3,2)¥ (2, 3))) . (43)
The distinction between (42) and (21) can be easily observed by comparing (43) with (23).
We notice that the tangent space of Hd+ O(n)at f=V(J1,...,Jgr1)V" is

d+1 d+1 d+1
[[om) | = (VJ;VTs0(n)) = P (VJs0(n)VT).
j= j=1 j=1

Proposition 4.3. At a point | = V(Ji,...,Jg41)VT € Flag(ny,...,ngR"™), the normal space
N; Flag(ni,...,nq;n) consists of vectors

V(hZi,. . Jay1Zar )V
where Z1,...,Zq € so(n) satisfy the relation
Zi(k,l) — Z1(k,1) =0, foralll<k#1<d+1.
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In particular, we have a decomposition

d+1
Nf Flag(ny,...,ngn) = N; (H Gr(my, n)) @ Nf, (44)
k=1
where N ( Zi} Gr(my, n)) = Zii NV Jp o VT Gr(mg,n) and

Ng ={V(Jmrn—mi 21, - - -, de+17n_md+1Zd+1)VT 2 Zy € s0(n), Zy(k,1) — Z1(k,1) =0,

Proposition 4.4 (Projections). Projections from T; (Hgi O(n)) onto T; Flag(ni,...,ng;n) and
N; Flag(ni,...,ng;n) are respectively given by

d+1
proj%r : ']I‘% (H O(n)) — T;Flag(nl, NPT
k=1
V(Jih1, .. Japihar))VT = V(X Xag) VT, (46)
and
d+1
prOj?I : T]z <H O(n)) — N% Flag(ni,...,ngn)
k=1
V(Jih, .. JapiNa))VT = V(21,0 Zg)VT, (47)
where for each k = 1,...,d, Xy € S, (resp. Zr € R™") is partitioned as (X(p, q))gfglzl (resp.

(Zk(p, q))dJrl ) with respect ton =mqy + -+ +mgy1 and

p,q=1
S(Ak(k,q) — Ag(k,q), if p=Fk #q
Xi(p,q) = § —3(Ak(p, k) — Ap(p. k), ifg=k#p
0, otherwise.

5(Ak(k, q) + Mg(k,q), if p=Fk #q
Zi(p,q) = { —3(Ak(p, k) + Ap(p k), ifg=k #p
Ak (p,q), otherwise.

As an illustrative example, we take a tangent vector £ of O(n) x O(n) x O(n) at some point
f =V (Jy,J2, J3)VT, which can be written as

A B C X Y Z L M N
ce=v||B" D E|.|YT w s|,|-M" P Q|]|VT,
cT —E" F| |-z T T| | N7 Q" R
where A, X, L € so(my), D,W,P € so(ms), F,T,R € so(ms), B,Y,M € R™*™2 (C Z N €
R™ ™3 F S @ € R™2*™3_ The projection of £ to T;Flag(nl,ng;n) is

0 B-Y C—N B 0 __B-Y 0 0 0 _C-—-N

. T_ T 2 2 T_~T 2 S— SE
pI'OJ%T(f) =V BTQYT 0 0 ’ - 2Y T0 T 2Q ’ TO T 'IQ T B 2Q v
c ;N 0 0 0 S ;Q 0 _C ;N _ S EQ 0

and its projection to NjFlag(ni,ng;n) is

A B—gY C-|Z-N' X B;—Y A L M CJQrN
. T T T T S S
proji (§) =V | |[ZF~ D E |, |5E5 w e | M7 p el |y
CT_;_NT —ET F —ZT ST+QT T CT—;NT ST_;QT
2
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4.2. geodesics. Assume that c(t) is a curve in Flag(ni,...,ng;n), then according to Proposi-
tion 4.2 we may parametrize c(t) as
ct)=V(E)(J1,. ..  Jgr) V()T (48)

for some differentiable curve V'(t) in O(n). Moreover, we have V(t) = V(t)A(t) where A(t) is a

curve in so(n) partitioned as A(t) = (A(p, q))gj;l:l with respect to mj + -+ + mgy; = n and and

A(k,k)(t) =0,k =1,...,d+ 1. This implies that we have
ét) = Th(t) + To(t) — 2T5(2),

where Tj(t)’s are respectively given by

Ti(t) = V() (AW Ty — AL, ..., Al) Ja1 — Jann AV (1) (49)
Ty(t) = V() (A2 () Jr + JIAP(E), ..o, A2 (8) Jarr + Jart A2(0) VT (L), (50)
T3(t) = V() (A JIA(E), ..., A(t) T A) VT (2). (51)

By similar calculations in proofs of Lemmas 3.7 and 3.8, we may easily obtain the following char-
acterizations of projlr(t)(Tj(t)),j =1,2,3.

Lemma 4.5. Let ¢(t), A(t), T1(t), To(t), T5(t) be as above. We have
(1) Ty(t ) eT ()Flag(nl,...,nd;n).
(2) proif (T2(1) =
(3) profly (Tu(t)) =

Proposition 4.6. Let c¢(t) be a curve on Flag(ny,...,ng;n) parametrized as
c(t) =V (N, .., Jar)V ()"

for some differentiable curve V (t) in O(n). Let A(t) be the curve in so(n) such that V (t) = V(t)A(t),
where A(t) is a curve in so(n) partitioned as A(t) = (A(p, q))p g1 With respect tomi+---+mg1 =n
and and A(k,k)(t) = 0,k = 1,...,d+ 1. Then c(t) is a geodesic curve if and only if V(t) =
V(0) exp(tA(0)).

Proof. Since c(t) is a geodesic if and only if proj.(¢(f)) = 0, Lemma 4.5 implies that c(t) is a
geodesic curve if and only if

ATy — JA(®) =0, k=1,....d+1.

By (19), we may conclude that c(t) is a geodesic if and only if A(t) =0, ie., A(t) = A(0). This
implies that V' (¢) is determined by the equation V' (t) = V(¢)A(0), from which we may conclude
that V' (t) = V(0) exp(tA(0)). O

5. THE COMPARISON OF RIEMANNIAN METRICS ON FLAG MANIFOLDS

The goal of this section is to discuss relations among three Riemannian metrics on a flag manifold
Flag(nq,...,ng;n). We recall that the two metrics discussed in this paper are respectively induced
by the embedding € : Flag(ni,...,ng;n) — Hi:l O(n) given in (16) and € : Flag(ni,...,ngn) —

ii} O(n) given in (38). For notational simplicity, we denote the two induced metrics by ¢¢ and
g¢, respectively. Yet there is another metric induced from the homogeneous space structure of

Flag(ni,...,ng;n), which is discussed thoroughly in [5]. We denote this quotient metric by g7.

Proposition 5.1. The Riemaannian metrics §¢ and g% coincide. Moreover, g¢ and g° coincide
with g¢ when d = 1, in which case Flag(nq,...,ng;n) is simply the Grassmann manifold Gr(ny;n).
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We will see in Proposition 5.2 that both ¢¢ and §¢ = ¢ can be constructed by a uniform method.
To begin with, we notice that in general, any smooth map

Q: (Rnxn)d SN Rnxn
induces an embedding £, : (R”X”)d — (R”X")d+1 defined by
E@(Al,...,Ad) = (Al,... ,Ad,(p(Al,...,Ad)), Aj S Rnxn,j =1,...,d.

Hence we have another embedding k., o € of Flag(ni,...,ngn) into O(n)4*! C (R”X”)d+1, which

induces a metric g¥ on Flag(ni,...,ng;n) from the Euclidean metric on (R”X”)d+1.

Proposition 5.2. We have the following:
e g¥ = g° if and only if v is a constant map on e(Flag(ni,...,ng;n)). In particular, g¥ = g°
if @ is a constant map.
e There exists p such that g¥ = g°.

Proof. The “if” part of the first statement can be verified by a straightforward calculation. For
the “only if” part, we notice that g¥ = g¢° implies that the differential map d(q,,.. g, must
be zero on T(g, . o, €(Flag(ni,...,ngn)) at any (Q1,...,Qq) € €(Flag(ny,...,ng;n)). Since

e(Flag(nq,...,ng;n)) is connected and ¢ is continuous, we may conclude that ¢ is a constant
map on €(Flag(ni,...,ng;n)).
For the second statement, we notice that C' = e(Flag(ni,...,ng;n)) is a compact subset of

X = (R”X”)d and we can define

7/) : C — O(’I’l) g ]RTLXTL’ TX)(QL .. 7Qd) = Qd-‘rlv

1
where (Qg+1 + 1,)/2 is the projection matrix of (@?:1 im(Q; +In)) . We denote by p;; the

projection map from R™ ™ onto its (4, j)-th entry, 1 <i,j < n. It is clear that p;j o1 : C = R
is a smooth function. The compactness of C' in X implies that p;; o ¢ has a smooth extension
@ij : X — R. Indeed, we can first extend the function p;; o 1) smoothly to an open neighbourhood
of C and then further extend it smoothly to the whole X by a smooth partition of unity. Now we
have a smooth map

= (sz]) . (Rnxn)d N Rnxn

which extends 1 and hence we have g% = g°. g

6. AN ALTERNATING METHOD FOR OPTIMIZATIONS ON FLAG MANIFOLDS
Given a strictly increasing sequence ni < - -+ < ng, we define
myi=mni, Mgel =N —Ng, Mj=n;—n;_1, Jj=2,...,d+1
We recall from (37) that a flag {V4}¢_, € Flag(ny,...,ngn) can be regarded as {W;}%] via

]:
the modified embedding v : Flag(ni,...,ngn) — H;li% Gr(mj,n), where W; is the orthogonal

complement of V;_1in V;,2 <j <d+1, Wy = V; and V441 = R". Therefore, an optimization

problem on Flag(ni,...,ng;n) has the following form:
min f(wla“'vwd+1)
st. W, e Gr(mj,n),1<j<d+1 (52)

W, LW, 1<j<l<d+1

Here f is a function on Flag(ng, ..., ng;n). We propose Algorithm 1, an alternating type algorithm
to solve the problem (52).
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Algorithm 1 Alternating method for optimization on flag manifolds

Input A differentiable function f on Flag(ni,...,ng;n)

Output A critical point of f

Initialization Choose an initial point (W1, ..., Way1) € [[92] Gr(m;,n)
1: while not converge do
2: set (s,t) = (1,2)
3: forl1<s<t<d+1do

4: Solve the following sub-problem for (Xg, X;) € Gr(ms, n) x Gr(mg,n):
min f(W].v s 7WS—17X55WS+1) cee aWt—17Xt7Wt+la e Wd+1)
st Xo L Xy (53)

XSJ_Wj,lﬁj?éSSd-i-l
Xe LW 1<j#t<d+1
Update (W,, W,) by the solution (Xg,X;) to (53).
Update (s,t) by (s+1,t) if s+ 1 <t and by (s,t + 1) otherwise

5
6
7: end for
8: end while

We remark that the sub-problem (53) in Algorithm 1 is an optimization problem on a Grassmann
manifold. Indeed, we notice that W; in (53) is fixed whenever j # s,t. This implies

L

X, 0X, = | P W,
J#sit
is a fixed (ms + m¢)-dimensional subspace of R”. So the submanifold given by fixed W;,j # s,t
and Xy @ X, is isomorphic to Gr(ms,ms + my). This submanifold is actually a totally-geodesic
manifold, which is clear from the geodesic formulas of flag and Grassmann manifolds. Thus the
objective function

FOWq, oo W, X, Waig, oo, Wi, Xy, W, .. W)

can be recognized as a function on this submanifold Gr(ms, ms + my). Furthermore, at a given
point, there are d(d+ 1)/2 such submanifolds indexed by 1 < s <t < d+ 1. The tangent spaces of
those submanifolds are orthogonal to each other and span the whole tangent space. Algorithm 1 is
a generalization of coordinate descent algorithm in Euclidean space.

6.1. separation of subspaces. Given d + 1 subspaces Uy,...,Ugy; of some ambient space RY.
The separation problem can be mathematically formulated as the following optimization problem
on a flag manifold:

d+1
min - F(W) := > ||r(U;) — 7(W;) |7
j=1
st. W; e Gr(mj,n),1<j<d+1 (54)
W; LW,1<j<l<d+1

Here m; =dimU;,1 <j <d+1,n= Z;lii m; and 7; is the embedding of Gr(m;,n) into O(n)NS,,
defined by
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where p = {;11 my, q¢ = Zfl;rjlﬂ my and V = [vy,...,05] = [Vi,...,Vgr1] € O(n) such that
[Vpt+1s -+, Vg—1] = Vj,span{vpti,...,v4-1} = Wi
Lemma 6.1. Consider the mazximization of linear function f(Q) = (A,Q) on the Grassmann
manifold,

max (4,Q)

s.t. Q€ Gr(k,n)
The gradient of f(Q) is given by

VI(@) = [(A+ AT~ Q4Q - QATQ).

Let (A4 AT)/2 = UAUT be an eigendecomposition of (A + AT)/2 such that A = diag(Ai,..., \n),
A > >Ny Then QF = Uly 1 UT is a mazimizer of f(Q). Furthermore,

2[AIF(Q) = F(@) = [IVAQ)I*.

Proof. The formula for gradient is given in [4, Proposition 5.1]. The original problem is equivalent
to

max (A, Q)
st. Q€ Gr(k,n)
and we need to prove @ = I}, ,,—j, is a maximizer. Using gradient formula, we can simplify the first
order condition Vf(Q*) =0 to
QA = AQ".
So Q*, A can be simultaneously diagonalized, and we can assume Q* is diagonalized. The original
problem is equivalent to

min A0+ -+ Apdn.
S14- O =2k—n,5;=+1 nen

It is clear that 6y = --- = 0y = 1,0441 = -+ = 0, = —1 is a maximizer. So Q* = I, is a
maximizer. Now consider the last inequality. The term ||V f(Q)||?, f(Q*) — f(Q) can be simplified

IVI@IF = (A~ QAQ.A - QAQ)
- % PP %tr(AQAQ)
=1
— %tr(AQ*AQ*) - %tr(AQAQ),

For any ¢ > 2||A||, we have

c(f(Q") = F(Q) — IVFQ)I? = (A, Q") — c(A, Q) — tr(AQ"AQ") /2 + tr(AQAQ) /2
=9(Q%) —9(Q),
where g(Q) = ¢(A, Q) —tr(AQAQ) /2. Assume Q** is a maximizer of g(@Q). The first order condition

of g(Q) is

which is equivalent to
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By definition ¢ > 2[|A|| > [|Q"*A + AQ™ ||, so QA+ AQ** — ¢l is invertible and Q**A = AQ**. So
Q**, A can be simultaneously diagonalized. We can assume @Q** is diagonalized. So

n

9(Q) = S (@A IA: — ),

i=1

where ¢; is the diagonal of Q**. Again, @Q* is a maximizer of ¢g(Q). So we have proved that

9(Q") = 9(Q), ie.,
c(f(Q") = F(Q) ~ IVFQ)I* = 0.
Because ¢ is any number larger than 2||A||, it also holds for ¢ = 2||A|| and the proof is finished. O

Proposition 6.2. If we apply Algorithm 1 to solve the problem (54), then for each 1 < s <t < d+1,
the sub-problem has the form

min |[A4; — W L, m, WTH% + HA2 + W ln,m, WT”% (55)
s.t. W e O(ms+my)

where Ay, Ay € O(ms + my) N Sy +m, are some fized matrices. Moreover, the sub-problem has an
explicit solution W, which is given by the SVD of A1 — Ay, Ay — Ay = WKW/,

Denote the change of the value of F' at this step by A ;. By previous discussion, the full gradient
VF can be partition into d(d — 1)/2 components V¢ F that corresponds to the subproblems. Then

I175(Us) = 7e(Ue)[|As el > Vs FI.
Proof. Given 1 < s <t < d+ 1, the sub-step in (54) is
min  ||7s(Us) = (W) [ F + [|7e(Us) — 7e(We)l|

sit. (Ws, W) € Gr(ms, ms + my) x Gr(myg, ms + my)
We L W,

1
In particular, W, & W, = (@#s’t Wj) is a fixed (mgs + my)-dimensional vector space represented

1
by Vst := [Vs, Vi]. We use V< to denote the basis of (®j#s,t Wj> . The choice of Wy, W, can be

further specified by a orthogonal matrix W € O(mg + my) so that V,W = [W,, Wy] where W, W}
span W, W, respectively. As a result, the images of W,, W, can be written as

Ts(Wy) = VoW Ly, WV, + VEVE)T, 7(Wy) = =V W Ly, WV, + VE(VH)T

The desired (55) follows easily by taking Ay = V[;75(Us) Vs, A2 = VJ7(Up) Vs
Next we observe that the objective function in (55) can further be re-written as

IAL% + || A2]|% + 2(ms + me) — 2(A1, W Ty, i, W) + 2(Ag, W Iy, i, W)
=A% + [ A% + 2(ms + my) + 2(As — Ay, W Ly, WT).
Therefore, the problem (55) is equivalent to
min  (Ay — Ay, Wy, o, W) (56)
s.t. W e O(ms+my)

By previous lemma, we may conclude that a solution to (56) is W, which can be obtained by the
SVD of A; — As. Furthermore,

IVt FII* < [ A2 = Arll|As el < [I76(Us) = (U [ Asel.
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Theorem 6.3. Consider a randomized version of Algorithm 1 for problem (54). At each step,
choose (s, t;) uniformly from all possible (s,t). Let W; be the point at step i. Then with probability
1, every cluster point of W; is a stationary point. (Because flag manifold is compact, cluster point
exists.)

Proof. If ||75(Us) — 7:(Uy)|| = 0 for all s, ¢, then the function is trivial and there is nothing to prove.
Otherwise, there is a set A C {(s,t) | 1 < s <t < d+ 1} such that ||75(Us) — (Uy)|| # 0 if and
only if (s,t) € A. At each step i, assume argmaxs e ||V, F'(W;)| is achieved for (s*,¢*). If
(siyt;) = (s*,t*), then

[V e e (W)
F(W,) — F(W; > .
(W) = FWer) 2 (2 0,0y = 7 (U

max ||V, F'(W;) |2
— max||75(Us) — 7(Uy)||
> C|IVF (W),

where C'is a constant independent of W;. If (s;,t;) # (s*,t*), at least we have F(W;)—F (W, ;) > 0.
So

2C
n(n—1)

Summing from ¢ = 0 to oo, and take expectation, we have

EF(W;) — EF(Wiy1) > IV (W)

o0
E[F(Wo) — lim F(W;)] > C'E " [VF(W;)|.
1—00 i—0
So with probability 1, >.7°, [|[VE(W,)||? exists and |[VF(W;)|| converges to 0. Any cluster point
must be a stationary point. ]

7. NUMERICAL EXPERIMENTS

In this section, we consider the function
d

FOV) =t (Vi AV,
k=1
where A; is randomly generated symmetric matrix, V; is the submatrix of V' with index 1 < i <
n,ne_1 < j < nyg, i.e., the basis of Wy. This function is clearly a function on the flag manifold
Flag(ni,...,ngn).

We choose Flag(5,5;200) and test five methods: (i) gradient descent method under classical
embedding metric; (ii) gradient descent method under modified embedding metric; (iii) coordinate
gradient descent method under modified embedding metric; (iv) gradient descent method using the
quotient model proposed in Algorithm 1 in [5]; (v) coordinate minimization method under modified
metric (Algorithm 1). Figure 1 shows the convergence rate averaged over 10 simulations. We also
record the running time to hit [|[Vf(V)| < 107°, averaged over 10 simulations, as shown in Table
1.

Method (ii) is equivalent to (iv), and their convergence rate and running time are similar. All
four descent method has comparable performance while the coordinate minimization outperforms
them significantly.

The coordiante minimization method works best for this special choice of f(V) because the
optimization sub-problem has explicit solution and can be solved sufficiently. For more general
problems, it might not be the case. However, This special choice of f covers many common
problems appeared in flag manifolds optimization. Most notably, it is equivalent to the projection
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(i) Classic Descent 21.428s
(ii) Modified Descent 11.291s
(iii) Coordinate Descent 25.548s
(iv) Quotient Descent 10.238s
(v) Coordinate Minimization | 0.552s

TABLE 1. Running time to hit ||[Vf(V)|| < 107> of different methods.

Convergence of gradient descent

10" A —— Coordinate Minimization
——— Classic Descent
10— - —— Coordinate Descent
—— Modified Descent
—— Quotient Descent
1072
Q 1075 .
=
>
1077 i
1079 .
10-11 4
0 100 200 300 400 500 600 700 800 900

iterations

Ficure 1. Convergence behavior of different methods.

problem under modified embedding 54. As a result, the extrinsic sample mean problem [1] for flag
manifold under modified embedding can be solved efficiently.
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APPENDIX A. PARALLEL TRANSPORT WITH RESPECT TO THE CLASSICAL EMBEDDING
Let ¢(t) be a curve on Flag(ny,...,ng;n) parametrized as
c(t) =V () (J1,...,Jg))V ().

Here V(t) is a curve in O(n) and hence V() = V (t)A(t) for some A(t) € so(n). If we partition A(t)
as A(t) = (A(J, k))?;i’fﬂ with respect to n. = my+---+mgy1, then A(k, k)(t) =0,k =1,...,d+1.
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We notice that by Proposition 3.2 a vector field Y (¢) on Flag(nq,...,ng;n) along the curve c(t)
can be parametrize as

Y(t) = V()(X(t) I — LX), ..., X({t)Jg — JaX )V (), (57)
where X (t) = (X (7, k))?:idﬂ € so(n) is the partition of X (t) with respect ton =mq+---+mgq

and X (k,k)(t) =0,k =1,...,d+ 1. We recall that Y (¢) is the parallel transport of Y (0) along c(t)
if and only if

proj ()( () = 0.
By differentiating (57), we obtain

Y(t) =V(E)(AL(t), ..., Aat))VT (1),
where
Ap(t) = (X(8)Jp — T X (1) + A)(X () Tk — e X (t) — (X ()T — Je X (£))A(t)
= (X(8)Jk — JeX (1) + (A X ()T + T X (E)A(£)) — (A(£) TR X () + X (1) JeA(L)).

Similar to what we have done in Subsection 3.3, we set

Ti(t) = V()X ()1 = TiX (), ..., X (1) Jg = JaX (O))V (1), (58)
To(t) = VO)(A@)X () J1 + T X (B)A(RL), ..., A()X () Ja + JaX ()AR)VT (1), (59)
Ts(t) = V() (A@) N1 X () + X(8)J1A(R), ..., A1) JaX (t) + X (8) JaA )V (1), (60)
thus Y (t) = Ty (t) 4+ T(t) — T3(t). By definition, we conclude that Ty (t) € T, Flag(ny, ..., ngn)
and hence to determine projlr(t) (Y (t)), it is sufficient to compute projlr(t) (T»(t)) and projlr(t)(Tg(t))

respectively.
Lemma A.1. There exists some symmetric matrices Wy, ..., Wy where
Sty X (ky$)A(s,q) = S5 A(s, k)X (a,8)T, if p=k,q # k,
Wi(p,q) = § 302t A, p) X (k, 8)" — 2021 X(p, s)A(s, k), if ¢ = k,p # F,
0, otherwise
such that projlr(t)(Tg(t)) =V(@E)(Wi(t),...,Wa(t)VT(t).
Proof. For each k = 1,...,d, we first compute A(t)X (¢)Jx + Jp X (t)A(t). Indeed, since X (t), A(t) €

so(n) and Ji is a diagonal matrix, we have
TeX(A() = (AB)X (1) Jr)" -
Therefore we only need to compute A(t)X (¢)J. To do so, we partition A(t) and X(t) as
Al) = (Ap,q), X)) =(X(p,q), 1<pg<d+]1. (61)
The (p, q)-th entry of Jp X (t)A(t) is

d+1 d+1
> Telp. )X (U s Z Jk(p,p) X (p, 5)A(s, q)
l,s=1
d+1
= (20,6 — 1) X(p,s)A(s, q).
s=1
Hence the (p, g)-th block of A(¢)X (¢)Jy + Jp X (t)A(t) is simply
d+1 d+1

(2056 —1) > X (p,)A(s,9) + (2656 — 1) D Als,p)" X (q,5)".

s=1 s=1
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In particular, for ¢ # k, the (k, ¢)-th block of A(¢) X (¢)Jx + Jp X (t)A(t) is

d+1 d+1
S Xk, 5)A(s,0) — 3 Als, k)T X (g, 5)1
s=1 s=1

and if moreover that ¢ < d, then the (k, ¢)-th block of A(t)X (t)J, + Jo X (t)A(t) is

d+1 d+1
- (Zm,s)A(s,q) . 2A<s,m<q,sr> |
s=1 s=1

This implies that
projly (Ta(t)) = V() (Wi (8), ..., WD)V (D),

where
YS X (ky 8)A(s,0) = S5 Als k)X (q,8)", i p= kg # &,
Wk(p7 Q) = Zgii A(Sap)TX(kv S)T - Z?Z% X(pa S)A(Sa k)a if q= k’p 7& ka
0, otherwise.
Lemma A.2. There exists symmetric matrices Z1, ..., Zq where
Zk(pa q) =\ Zlglgd,l;ﬁk (X(d +1, Z)A(lv k) + A(Zv d+ 1)TX(ka l)T) ) pr =d+ l,g= k,

0, otherwise.

such that projlr(t) (T5(t)) = V() (Z1(t), ..., Za(t))VT(L).
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Proof. We compute A(t)Jp X (t) + X () JiA(t) for each k =1,...,d. We partition A(t) and X (¢) as

in (61) respectively. We also notice that
X()JeA(t) = (A1) L X (1))
so that it is sufficient to compute X (t)JxA(t). The (p, q)-th block of X (t)JxA(t) is

d+1 d+1
> X(p )kl s)A(s, ) = > X (p, 1) (1, 1A(l, q)
l,s=1 =

U
—_

= (26kl - I)X(p7l>A(l7Q)

~

1
Hence the (p, g¢)-th block of A(¢)Jp X () + X () JpA(t) is
(

k
S (20— 1) (X(p, DA q) + Al D) X (g, 1)7).
1<I<d+1,l#p,q
In particular, for ¢ # k, the (k, g¢)-th block of A(¢)Ji X (t) + X (¢)JiA(t) is

- Y (X(kDA(Lg) +ALE)X(q,1)T)
1<I<d+1,1£kq

which is the same as the (k, ¢)-th block of A(t)J, X (t) + X (t)J,A(t) if moreover ¢ < d. Hence we

have
projll ) (T4(8) = V(#)(Z1(t), ., Za®)V (1),
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where for each 1 < k < d,

— Zlglgd,l;ﬁk (X(k, DAL, d+ 1)+ ALE)'X(d+1,0)7), iftp=Fk,qg=d+1,
Zr(p,q) = — Zlglsd#k (X(d+ 1L, )A(LE)+ Al d+ )" X(k,DT), ifp=d+1,q=k,
0, otherwise.

O
Proposition A.3 (parallel transport along any curve). Let c(t) =V (¢)(J1,...,Ja)V ()" be a curve
on Flag(ni,...,ng;n) and let Y(t) be a vector field along the curve c(t), parametrized as in (57).

Then Y (t) is a parallel transport if and only for each pair (k,q) such that 1 < k < q <d+1, we
have
—2X(kq)t Y (X(ks)A(s,q) = Ak, )X (s,0)+0q.ae1 D (X(k, DAL d+1) + Ak, )X (L, d+1)) = 0, (62)
1§;§I€d+1 1%511
s »q

which can be written in a more compact form:

(63)

2 = m (XD + | on, Kol b %],

(XoA1 + Ao X1)T 0
where Xg, Ag € Rvnar)x(n=nar1) x, Ay € R("nar1)Xnar1 gre submatrices determined by parti-
tions
_ | Xo Xi _ A M
S I e}
and w(A) is defined by setting all diagonal blocks of A € so(n) equal to zero.

Before we proceed, we remark that in particular if X = A, then [X,A] = 0 and (63) reduces to
the geodesic equation (33).
Next we re-write each term of (62) using (12). This leads to

vec (X (k, s)A(s,q)) = (A(s,q)" ® L) vec(X (K, s)) = —(A(g, 8) ® L, ) vec(X (K, s))
vec (A(s, k) X(q,5)") = (Im, ®A(s,k)") vec(X (¢, 5)") = (I, @A(K, s)) vec(X (s, q))

and hence (62) becomes

2 vec (X(k, q)) == 3 (T, @Ak, ) vee(X (s,9)) + (Alg, 5) @ L, ) vee(X (k, s)))
1<s<d+1
s#k,q
+ Og,d+1 Z (T, @A (K, 5)) vec(X (s,d + 1)) — (A(d+ 1, 5) ® Ly, ) vec(X (k, 5))) ,
1%;&%d
which using relations X (p, q) = —X(¢,p)" and vec(AT) = K™ vec(A)', can be written as
vec(X (1,2)) vee(X(1,2))
vec(X(1,3)) | _ 0 vec(X(1,3)) (64)
vec(X (d —1,d)) vec(X (d,d + 1))

for some () x (%) matrix function ®(¢). Now according to Theorem 2.5, (64) can be solved by
Peano—Baker series associated to the coefficient matrix ®(t).
We again take d = 2 for example. In this case, we write
0 A(t)  B(t)
A(t) = |—AT(1t) 0 C(t)|, A(t)eR™>™2 B(t) e R™M>™s C(t) € R™2*™3,
—-BT(t) =C'(t) 0

1 (™) is the commutation matrix defined in (13).
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Xt =|-UT(t) 0 W)

Vi) -wWTit) 0

L U(t) € R™*™2 V(t) € R™*™ Ti/(t) € R™2Xms,

Then we have

—V(t) 0 U(t) 0
pI‘OJC<t> (T1(t)) =2V (¢) (|: 0 :| , |:UT(t) 0 W(t):|) V)T,
T 0 0 —WT(t) 0
0 —(AOWE) +U®C(?)
prOjc(t)(T3 V(t) (|: 0 0 :| ,
AW (t) + U(t) )T 0 0
0 0
[o ATV () + U(t)TB(t):| > V)T,
0 VT + B()TU(t) 0
BO)YW®)T —vV@)C@t)T —A@)W(t)+U(t)C(t)
projg ) (T2 (t)) = V (t) ([ W(t)B(t)T -CvVLT 0 0 } ;
-WHTAWT+C@O)TU@)T 0 0

[ 0 —B(t)W(t) (t)C(t) 0 D
—-W@)B@t)T+C)V ()T 0 ATV -U@®™B@)| | V()"
0 V(£)TA(t) — B{t)TU(t) 0

Hence the system for X () to be a parallel transport is given by
(

2U(t) = =V (£)C()" + BHYW (1) = (=C(t) @ Ln, ) vee(V (1)) + (In, ®B(1)) K ™2™ vec(W (1)),
V(t) =U®)C(t) = (CH)T @ 1n,) vec(U(1)),
W(t) = —U)"B(t) = —(B()" @ 1n,) vec(U(t)).
Hence we have
Vec(l:](t))] 0 —lct)y®Ln, i(m, @B(t))K(mzmw)] vec(U(t))]
vec(V(t)) | = | C(t)" @ Ly, 0 0 vec(V () | .
vec(W (t)) —B(t) @ Ln, 0 0 vec(W (t))

APPENDIX B. PARALLEL TRANSPORT WITH RESPECT TO THE MODIFIED EMBEDDING

Now we proceed to discuss the parallel transport of a tangent vector along a curve on a flag

manifold. Again we parametrize a curve ¢(t) on Flag(ni,...,ng;n) as (48). Let Y (¢) be a vector

field on Flag(ni,...,ng;n) along the curve ¢(t). Then we may correspondingly parametrize Y (t)

Y(t) = VX @) = N1 X (1), ..., X () Jas1 — Jann X () V(D) (65)

where X (t) = (X (5, k))?zl f“ € so(n) is the partition of X (¢) with respect to n =mqy+---+mgi1
and X (k,k)(t) =0,k = ,d + 1. We notice that Y (t) = T1(t) + Ty(t) — T3(t) where

Ty(t) = VO)(X () J1 = iX(t),- .., X (D) Jas1 — Jan X (O)V (1), (66)

To(t) = V(OAD)X (@) Sy + WX (AL, ., AOX () Ja1 + Japn XOA@)VT(E),  (67)

T3(t) = V(O)(AD)NX (L) + X () LA®R), - At)Jan X (1) + X (D) Jap AR)VT(E).  (68)

Similar computations in proofs of Lemmas A.1 and A.2 lead to the following

Lemma B.1. Let c(t), A(t),Y (t), X(t),T1(t), To(t), T5(t) be as above. We have
(1) Ti(t) € To Flag(na, ..., na;n).
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(2) projlr(t)(Tg(t)) =V () Wi(t),...,Wap1(£))VT(t), where
Yo X (ky s)A(s,q) = S5 Als k)X (0. 9)"s if p=k,q # k.
Wk(pa q) = Z;P:r% A(S’p)TX(k7 S)T - ZSJ:F% X(pa S)A(Sv k)v Zf q= kap 7& k>
0, otherwise.

(3) projy (Ts(t)) = 0.

Now we recall that Y'(¢) is a parallel transport along the curve c(t) if and only if proj. (Y (t)) = 0.
Combining this with Lemma B.1, we may derive the equation for parallel transport.

Proposition B.2 (Parallel transport along any curve). Let ¢(t), A(t),Y (t), X (t) be as above. The
vector field Y (t) along c(t) is a parallel transport if and only if

X(1) = g (X (), A®), (69)

where m(A) is the matriz obtained by setting all diagonal blocks equal to zero for A € so(n).

In particular, if ¢(t) = V(£)(J1, ..., Jge1)VT(t) is a geodesic, then Proposition 4.6 implies V() =
V(t)A for some constant matrix A € so(n), from which we obtain the following characterization of
a parallel transport along a geodesic in Flag(ni,...,ng;n).

Corollary B.3 (Parallel transport along a geodesic). If ¢(t) = V(t)(J1,...,Jar1)V(t) is the
geodesic curve passing through V(0)(J1, ..., Jgr1)V"(0) with the tangent direction
V(0)(AJy — J1A, ..., Adger — Jg 1 A)VT(0), A€so(n), Ak, k)=0,k=1,...,d+1,
then the parallel transport Y (t) of
Y(0) = V(0)(BJ, — JiB, ..., BJgs1 — Jua B)VT(0), B € so(n),Blk,k)=0,k=1,...,d+1,
is
Y(t)=V(E)(X(t)r — hX(®),..., X () Jar1 — Jar X ()V(¢),
where

X(1) = yr(X(0),4)), X(0)=B,

where w(A) is the matriz obtained by setting all diagonal blocks equal to zero for A € so(n).
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