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1. Introduction

Let d ≤ n be positive integers and let (n1, . . . , nd) be a sequence integers such that 0 < n1 <
· · · < nd < n. We denote by Flag(n1, . . . , nd;Rn) the set of all flags in Rn of type (n1, . . . , nd):

Flag(n1, . . . , nd;n) :=
{
{Vk}dk=1 : Vk ( Vk+1 ( Rn, dimVk = nk, k = 1, . . . , d− 1

}
.

2. Preliminaries

2.1. differential geometry of Grassmann manifolds. Let k ≤ n be positive integer. We denote
by Gr(k, n) the Grassmann manifold of k dimensional subspaces of Rn. According to [4], Gr(k, n)
can be characterized as a submanifold of O(n) ∩ Sn, i.e.,

Gr(k, n) ' {Q ∈ O(n) ∩ Sn : tr(Q) = 2k − n} (1)

= {V Ik,n−k V
T : V ∈ O(n)} . (2)

Here Sn is the space of n× n symmetric matrices and Ik,n−k is the diagonal matrix

[
Ik 0
0 − In−k

]
.
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Proposition 2.1 (Tangent space I). Let Q ∈ Gr(k, n) with eigendecomposition Q = V Ik,n−kV
T.

The tangent space of Gr(k, n) at Q is given by

TQ Gr(k, n) =
{
X ∈ Rn×n : XT = X, XQ+QX = 0, tr(X) = 0

}
(3)

=

{
V

[
0 B
BT 0

]
V T ∈ Rn×n : B ∈ Rk×(n−k)

}
(4)

=

{
QV

[
0 B
−BT 0

]
V T ∈ Rn×n : B ∈ Rk×(n−k)

}
. (5)

Proposition 2.2 (Riemannian metric). Let Q ∈ Gr(k, n) with Q = V Ik,n−kV
T and

X = V

[
0 B
BT 0

]
V T, Y = V

[
0 C
CT 0

]
V T ∈ TQ Gr(k, n).

Then

〈X,Y 〉Q := tr(XY ) = 2 tr(BTC) (6)

defines a Riemannian metric. The corresponding Riemannian norm is

‖X‖Q :=
√
〈X,X〉Q = ‖X‖F =

√
2‖B‖F. (7)

Theorem 2.3 (Geodesics I). Let Q ∈ Gr(k, n) and X ∈ TQ Gr(k, n) with

Q = V Ik,n−kV
T, X = V

[
0 B
BT 0

]
V T. (8)

The geodesic γ emanating from Q in the direction X is given by

γ(t) = V exp

(
t

2

[
0 −B
BT 0

])
Ik,n−k exp

(
t

2

[
0 B
−BT 0

])
V T. (9)

The differential equation for γ is

γ(t)Tγ̈(t)− γ̈(t)Tγ(t) = 0, γ(0) = Q, γ̇(0) = X. (10)

Proposition 2.4 (Parallel transport). Let Q ∈ Gr(k, n) and X,Y ∈ TQ Gr(k, n) with

Q = V Ik,n−kV
T, X = V

[
0 B
BT 0

]
V T, Y = V

[
0 C
CT 0

]
V T,

where V ∈ O(n) and B,C ∈ Rk×(n−k). Let γ be a geodesic curve emanating from Q in the direction
X. Then the parallel transport of Y along γ is

Y (t) = V exp

(
t

2

[
0 −B
BT 0

])[
0 C
CT 0

]
exp

(
t

2

[
0 B
−BT 0

])
V T. (11)

2.2. some useful functions. We recall the Peano–Baker series associated to a matrix function Φ :
[a, b]→ Rn×n. To define the Peano–Baker series, we first recursively define a sequence {Mk(t)}∞k=0
of matrix functions

M0(t) = In,

Mk(t) = In +

∫ t

a
Φ(s)Mk−1(s)ds, k ∈ N.

We have the following:

Theorem 2.5. [2, Section 3, Theorem 1] The sequence {Mk(t)}∞k=0 converges to a matrix function
M(t) uniformly on [a, b], which solves the differential equation

d

dt
X(t) = Φ(t)X(t), X(a) = In .
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In particular, given any column vector u ∈ Rn, M(t)u solves the differential equation

d

dt
x(t) = Φ(t)x(t), x(a) = u.

The limit matrix function M(t) in Theorem 2.5 is defined to be the Peano–Baker series associated
to Φ(t).

2.3. vectorization of a matrix. Let m,n be positive integers and let A[a1, . . . , an] be a matrix
of size m× n where a1, . . . , an ∈ Rm are column vectors of A. We define the vectorization of A to
be the column vector

vec(A) :=

a1...
an

 ∈ Rmn.

We recall that using vectorizations of matrices, we can express the matrix-matrix product in terms
of matrix-vector product. Namely, for A ∈ Rm×n and B ∈ Rn×l, we have

vec(AB) = (Il⊗A) vec(B) = (BT ⊗ Im) vec(A). (12)

Moreover, for any positive integers m,n, there exists a permutation matrix K(m,n) ∈ Rmn×mn,
called the commutation matrix such that

K(m,n) vec(A) = vec(AT), A ∈ Rm×n. (13)

3. Sub-Riemannian geometry of flag manifolds with classical embeddings

According to [5, Proposition 3.2], Flag(n1, . . . , nd;n) can be embedded into a product of Grass-
mann manifolds via

ι : Flag(n1, . . . , nd;n) ↪→ Gr(n1, n)×Gr(n2 − n1, n) · · · ×Gr(nd − nd−1, n)

({Vk}dk=1) 7→ (W1,W2, . . . ,Wd). (14)

Here W1 = V1 and Wk is the orthogonal complement of Vk−1 in Vk, k = 2, . . . , d. For simplicity,
we denote

m1 := n1, md+1 := n− nd, mk := nk − nk−1, k = 2, . . . , d (15)

so that ι is an embedding of Flag(n1, . . . , nd;n) into
∏d
k=1 Gr(mk, n).

3.1. an embedding of a flag manifold into a matrix manifold. By (1), we may also embed
each Gr(mk, n) into O(n) and hence we can write Wk in (14) as Vk Imk,n−mk

V T
k for some Vk ∈ O(n).

We denote by τ the induced embedding of
∏d
k=1 Gr(mk, n) into O(n)d. In the following, we will

explicitly characterize the image τ ◦ ι (Flag(n1, . . . , nd;n)) in O(n)d.

Proposition 3.1 (embedding). The image of the embedding

ε : Flag(n1, . . . , nd;n)
ι
↪−→

d∏
k=1

Gr(mk, n)
τ
↪−→

d∏
k=1

O(n) (16)

is given by

ε (Flag(n1, . . . , nd;n)) = {(Q1, . . . , Qd) ∈
d∏

k=1

O(n) : tr(Qk) = 2mk − n,QT
k = Qk

(In +Qk)(In +Qk+1) = 0, k = 1, . . . , d}. (17)

In particular, we also have

ε (Flag(n1, . . . , nd;n)) = {(V J1 V
T, . . . , V Jd V

T) : V ∈ O(n)} , (18)
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where Jk = diag(− Im1 , · · · ,− Imk−1
, Imk

,− Imk+1
, · · · ,− Imd

,− In−nd
) is obtained by permuting di-

agonal blocks of Imk,n−mk
.

Proof. According to (1), we must have ε({Rnk}dk=1) = (Q1, . . . , Qd) ∈ (O(n) ∩ Sn) with rankQk =
2mk−n. Moreover, since Wk is perpendicular to Wk+1, we must have PWk

◦PWk+1
= 0 where PU is

the orthogonal projection from Rn onto a subspace U. Now by [4, Proposition 2.3], we have PWk
=

1
2(In +Qk) which proves (17). To see (18), we notice that the relation (In +Qk)(In +Qk+1) = 0
implies thatQkQk+1 = Qk+1Qk and hence there exists V0 ∈ O(n) diagonalizingQk’s simultaneously,
i.e., Qk = V0DkV

T
0 where Dk is a diagonal matrix with mk −1’s and (n−mk) 1’s along its diagonal.

The restriction (In +Qk)(In +Qk+1) = 0 forces Dk = σTJkσ for some permutation matrix σ and
hence V := σV0 gives us the desired expression of ε({Rnk}dk=1) in (18). �

In fact, (18) is a special case of the general fact [3, page 384] that G/P is an adjoint orbit of
G if P is a parabolic subgroup of a semi-simple Lie group G. In our case, we have G = O(n) and
P = O(n1)× · · · ×O(nd) so that G/P ' Flag(n1, . . . , nd;n).

Due to Proposition 3.1, in the sequel we abuse the notation by also using Flag(n1, . . . , nd;n) to
denote ε (Flag(n1, . . . , nd;n)). Accordingly, an element in Flag(n1, . . . , nd;n) is written as a d-tuple

(V J1V
T, . . . , V JdV

T) = V (J1, . . . , Jd)V
T

for some V ∈ O(n), where m1 = n1 and mk = nk − nk−1 for k = 2, . . . , d.

3.2. tangent space, Riemannian metric and normal space. We first consider the tangent
space of Flag(n1, . . . , nd;n) at a point V (J1, . . . , Jd)V

T. To do this, we take a curve V (t) on O(n)

such that V (0) = V . It is clear that Λ := V (0)TV̇ (0) ∈ so(n) and hence the tangent vector
determined by the curve V (t)(J1, . . . , Jd)V (t)T is simply

V̇ (0)(J1, . . . , Jd)V (0)T + V (0)(J1, . . . , Jd)V̇ (0)T

which can be further written as

V (0) (Λ(J1, . . . , Jd)− (J1, . . . , Jd)Λ)V (0)T.

We partition Λ as Λ = (Λ(p, q))d+1
p,q=1 where Λ(p, q) is amp×mq matrix such that Λ(q, p) = −Λ(p, q)T.

This implies that

ΛJk − JkΛ = −2



0 · · · 0 Λ(k, 1)T 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 Λ(k, k − 1)T 0 · · · 0
Λ(k, 1) · · · Λ(k, k − 1) 0 Λ(k, k + 1) · · · Λ(k, d+ 1)

0 · · · 0 Λ(k, k + 1)T 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 Λ(k, d+ 1)T 0 · · · 0


. (19)

We notice that there is a natural identification
∏

1≤j<k≤d+1Rmj×mk ' so(n) and hence we have an
injective map

ψ :
∏

1≤j<k≤d+1

Rmj×mk ' so(n) ↪→
d∏
j=1

Sn, ψ((Ajk)1≤j<k≤d+1) =
1

2
(AJ − JA),

where J = (J1, . . . , Jd) and A ∈ so(n) is the skew-symmetric matrix uniquely determined by
(Ajk)1≤j<k≤d+1. The above calculations can be summarized as the following

Proposition 3.2. Given a point f := V (J1, . . . , Jd)V
T ∈ Flag(n1, . . . , nd;n), the tangent space of

Flag(n1, . . . , nd;n) at f is

Tf Flag(n1, . . . , nd;n) = V
{
ψ((Ajk)1≤j<k≤d+1) : Ajk ∈ Rmj×mk , 1 ≤ j < k ≤ d+ 1

}
V T.
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In other words, Tf Flag(n1, . . . , nd;n) consists of vectors V (X1, . . . , Xd)V
T ∈

∏d
j=1 Sn satisfying

Xk(k, l) = −Xl(k, l), Xk(p, q) = 0, Xk(k, k) = 0, 1 ≤ k, l ≤ d, 1 ≤ p, q ≤ d+ 1 and p, q, l 6= k.
(20)

Here for each 1 ≤ s, t ≤ d + 1, Xk(s, t) ∈ Rms×mt denotes the (s, t)-th block of Xk ∈ Sn when we
partition Xk with respect to n = m1 + · · ·+md +md+1.

Due to Proposition 3.2, we are able to parametrize a curve on Flag(n1, . . . , nd;n) easily.

Corollary 3.3 (curves). If c : (−ε, ε) → Flag(n1, . . . , nd;n) is a differentiable curve such that
c(0) = V (J1, . . . , Jd)V

T, then there exists a differentiable curve Λ : (−ε, ε) → so(n) such that
Λ(k, k)(t) ≡ 0, k = 1, . . . , d+ 1 and

c(t) = V exp(Λ(t))(J1, . . . , Jd) exp(−Λ(t))V T,

where Λ(t) = (Λ(j, k))d+1,d+1
j,k=1 is the partition of Λ(t) with respect to n = m1 + · · ·+md+1.

As a submanifold of
∏d
k=1 Gr(mk, n) (or equivalently,

∏d
k=1 O(n)), Flag(n1, . . . , nd;n) is equipped

with an induced Riemannian metric:

〈V (X1, . . . , Xd)V
T, V (Y1, . . . , Yd)V

T〉f :=
d∑

k=1

tr(XkYk), (21)

where f = V (J1, . . . , Jd)V
T is a point in Flag(n1, . . . , nd;n) and V (X1, . . . , Xd)V

T, V (Y1, . . . , Yd)V
T

are tangent vectors of Flag(n1, . . . , nd;n) at f. More explicitly, we can write

〈V (X1, . . . , Xd)V
T, V (Y1, . . . , Yd)V

T〉f = 2
d∑

k=1

∑
l<k<m

tr(Xk(l, k)Yk(k, l) +Xk(m, k)Yk(k,m)). (22)

We remark that summands in the formula (22) are not evenly counted. For example, if d = 2, then
〈V (X1, X2)V

T, V (Y1, Y2)V
T〉f is

2(tr(X1(2, 1)Y1(1, 2)) + tr(X1(3, 1)Y1(1, 3)) + tr(X2(1, 2)Y2(2, 1)) + tr(X2(3, 2)Y2(2, 3))), (23)

in which the coefficient of tr(X1(2, 1)Y1(1, 2)) is 4 since tr(X2(1, 2)Y2(2, 1)) = tr(X1(2, 1)Y1(1, 2))
while coefficients for the other two summands are both 2.

For each Q ∈ O(n), we have TQ O(n) = Qso(n) and hence for each (Q1, . . . , Qd) ∈
∏d
k=1 O(n),

we obtain

T(Q1,...,Qd)

(
d∏

k=1

O(n)

)
=

d⊕
k=1

Qkso(n).

To calculate the normal space of Flag(n1, . . . , nd;n) in
∏d
k=1 O(n) at f = V (J1, . . . , Jd)V

T, we
need to determine Y1, . . . , Yd ∈ so(n) such that Y := (V J1V

TY1, . . . , V JdV
TYd) is perpendicular

to Tf Flag(n1, . . . , nd;n), i.e., 〈X,Y 〉f,O(n) = 0 for all X ∈ Tf Flag(n1, . . . , nd;n). Here the inner

product 〈·, ·〉f,∏d
k=1 O(n) is the canonical Riemannian metric on

∏d
k=1 O(n) at the point f, which

induces (21). We notice that for X = V (X1, . . . , Xd)V
T ∈ Tf Flag(n1, . . . , nd;n)

V XkV
T = (V JkV

T)V JkXkV
T, k = 1, . . . , d,
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which implies that

〈X,Y 〉f,∏d
k=1 O(n) =

d∑
k=1

tr((V JkXkV
T)TYk)

=
d∑

k=1

tr((V XkJkV
T)Yk)

=
d∑

k=1

tr((XkJk)V
TYkV )

Since 〈X,Y 〉f,∏d
k=1 O(n) = 0 holds for any X ∈ Tf Flag(n1, . . . , nd;n), we can equivalently write this

condition as
d∑

k=1

tr((XkJk)Zk) = 0, (X1, . . . , Xd) ∈ Tf0 Flag(n1, . . . , nd;n),

where f0 = (J1, . . . , Jd) ∈ Flag(n1, . . . , nd;n) and Zk = V TYkV, k = 1, . . . , d. If we fix a pair (k, l)
such that 1 ≤ k ≤ d, 1 ≤ l ≤ d+ 1, k 6= l and set Xm(p, q) = 0 for

(m, p, q) 6∈ {(k, k, l), (k, l, k), (l, k, l), (l, l, k)} ,
then since XkJmk,n−mk

is skew-symmetric, we have

0 = 〈X,Y 〉f,∏d
k=1

O(n) = tr(Xk(k, l)Zk(l, k))− tr(Xk(k, l)TZk(k, l))− tr(Xl(k, l)
TZl(k, l)) + tr(Xl(k, l)Zl(l, k))

= tr(Xk(k, l)(Zk(l, k))− Zl(l, k)))− tr(Xk(k, l)T(−Zk(k, l)) + Zl(k, l)))

= tr(Xk(k, l)(Zk(l, k))− Zl(l, k))) + tr(Xk(k, l)T(Zk(k, l))− Zl(k, l))

= 2 tr(Xk(k, l)(Zk(l, k)− Zl(l, k))).

Therefore, we may derive the following characterization of Nf Flag(n1, . . . , nd;n):

Proposition 3.4. At a point f := V (J1, . . . , Jd)V
T ∈ Flag(n1, . . . , nd;Rn), the normal space

Nf Flag(n1, . . . , nd;n) consists of vectors

(V J1Z1V
T, . . . , V JdZdV

T)

where Z1, . . . , Zd ∈ so(n) satisfy the relations

• Zk(k, l)− Zl(k, l) = 0 for all 1 ≤ k 6= l ≤ d.
• Zk(k, d+ 1) = 0, Zk(d+ 1, k) = 0 for all 1 ≤ k ≤ d.

In particular, we have a decomposition

Nf Flag(n1, . . . , nd;n) = Nf

(
d∏

k=1

Gr(mk, n)

)⊕
N0

f (24)

where Nf

(∏d
k=1 Gr(mk, n)

)
:=
∏d
k=1NV Jmk,n−mk

V T Gr(mk, n) and

N0
f := {(V Jm1,n−m1Z1V

T, . . . , V Jmd,n−md
ZdV

T) : Zk ∈ so(n), Zk(k, l)− Zl(k, l) = 0,

Zk(k, k) = 0, Zk(p, q) = 0, Zk(k, d+1) = 0, Zk(d+1, k) = 0, 1 ≤ k, l ≤ d, 1 ≤ p, q ≤ d+1, p, q 6= k}.
(25)

We recall that Flag(n1, . . . , nd;n) can also be embedded into
∏d
k=1 Gr(nk, n) as a Riemannian

submanifold. Hence we may also characterize the normal space of Flag(n1, . . . , nd;n) with respect
to this embedding.

Corollary 3.5. The normal space of Flag(n1, . . . , nd;n) in
∏d
k=1 Gr(mk, n) at a point f is N0

f .
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Proposition 3.6 (Projections). Projections from Tf

(∏d
k=1 O(n)

)
onto Tf Flag(n1, . . . , nd;n) and

Nf Flag(n1, . . . , nd;n) are respectively given by

projTf : Tf

(
d∏

k=1

O(n)

)
→ Tf Flag(n1, . . . , nd;n)

V (J1Λ1, . . . , JdΛd)V
T 7→ V (X1, . . . , Xd)V

T. (26)

and

projNf : Tf

(
d∏

k=1

O(n)

)
→ Nf Flag(n1, . . . , nd;n)

V (J1Λ1, . . . , JdΛd)V
T 7→ V (Z1, . . . , Zd)V

T (27)

where for each k = 1, . . . , d, Xk ∈ Sn (resp. Zk ∈ Rn×n) is partitioned as (Xk(p, q))
d+1
p,q=1 (resp.

(Zk(p, q))
d+1
p,q=1) with respect to n = m1 + · · ·+md+1 and

Xk(p, q) =



1
2(Λk(k, q)− Λq(k, q)), if p = k 6= q ≤ d
Λk(k, d+ 1), if p = k, q = d+ 1

−1
2(Λk(p, k)− Λp(p, k)), if q = k 6= p ≤ d
−Λk(d+ 1, q), if q = k, p = d+ 1

0, otherwise.

Zk(p, q) =



1
2(Λk(k, q) + Λq(k, q)), if p = k 6= q ≤ d
0, if p = k, q = d+ 1

−1
2(Λk(p, k) + Λp(p, k)), if q = k 6= p ≤ d

0, if q = k, p = d+ 1

Λk(p, q), otherwise.

Before we proceed, we work out the case for d = 2 to exhibit our calculations above. In this
case, our flag manifold is Flag(n1, n2;n) and hence m1 = n1,m2 = n2 − n1,m3 = n− n2. A point
f in Flag(n1, n2;n) is written as

V (J1, J2)V
T = V

Im1 0 0
0 − Im2 0
0 0 − Im3

 ,
− Im1 0 0

0 Im2 0
0 0 − Im3

V T, V ∈ O(n).

A tangent vector of Flag(n1, n2;n) at f is of the form

V

 0 A B
AT 0 0
BT 0 0

 ,
 0 −A 0
−AT 0 C

0 CT 0

V T, A ∈ Rm1×m2 , B ∈ Rm1×m3 , C ∈ Rm2×m3 .

The normal space of Flag(n1, n2;n) as a submanifold of O(n)×O(n) at f consists of vectors

V

X Y 0
Y T Z W
0 −W T U

 ,
 R Y S
Y T T 0
−ST 0 K

V T,

where X,R ∈ so(m1), Z, T ∈ so(m2), U,K ∈ so(m3), Y ∈ Rm1×m2 ,W ∈ Rm2×m3 , S ∈ Rm1×m3 .
A tangent vector ξ of O(n)×O(n) at f can be written as

ξ := V

 A B C
BT D E
CT −ET F

 ,
 X Y Z
Y T W S
−ZT ST T

V T,
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where A,X ∈ so(m1), D,W ∈ so(m2), F, T ∈ so(m3), B, Y ∈ Rm1×m2 , C, Z ∈ Rm1×m3 , E, S ∈
Rm2×m3 . The projection of ξ onto Tf Flag(n1, n2;n) is

projTf (ξ) = V

 0 B−Y
2 C

BT−Y T

2 0 0
CT 0 0

 ,
 0 −B−Y

2 0

−BT−Y T

2 0 S
0 ST 0

V T

and its projection onto Nf Flag(n1, n2;n) is

projNf (ξ) = V

 A B+Y
2 0

BT+Y T

2 D E
0 −ET F

 ,
 X B+Y

2 Z
BT+Y T

2 W 0
−ZT 0 T

V T

The normal space N0
f of Flag(n1, n2;n) as a submanifold of Gr(m1, n)×Gr(m2, n) at f consists of

vectors

V

 0 Y 0
Y T 0 0
0 0 0

 ,
 0 Y 0
Y T 0 0
0 0 0

V T, Y ∈ Rm1×m2 .

We also recall that the tangent space Tf(Gr(m1, n)×Gr(m2, n)) consists of vectors

V

 0 A B
AT 0 0
BT 0 0

 ,
 0 D 0
DT 0 C
0 CT 0

V T, V ∈ O(n), A,D ∈ Rm1×m2 , B ∈ Rm1×m3 , C ∈ Rm2×m3 .

The following identities can be directly verified by the above computations.

Tf (O(n)×O(n)) = Tf Flag(n1, n2;n)
⊕

Nf Flag(n1, n2;n),

Tf(Gr(m1, n)×Gr(m2, n)) = Tf Flag(n1, n2;n)
⊕

N0
f .

3.3. geodesics. Recall that we may parametrize a curve c(t) on Flag(n1, . . . , nd;n) as

c(t) = V (t)(J1, . . . , Jd)V
T(t),

where V (t) is a curve in O(n). By differentiating the equation V (t)TV (t) = In, we obtain

V̇ (t)TV (t) + V (t)TV̇ (t) = 0,

from which we may write V̇ (t) as

V̇ (t) = V (t)Λ(t),

for some Λ(t) ∈ so(n). According to Proposition 3.2, we may further partition Λ(t) as

Λ(t) = (Λjk)
d+1,d+1
j,k=1

with respect to n = m1 + · · ·+md+1 and Λkk(t) ≡ 0, k = 1, . . . , d+ 1. Hence the second derivative
of c(t) is

c̈(t) = V (t) (∆1(t), . . . ,∆d(t))V (t)T

where

∆k(t) = (Λ̇(t)Jk − Jk ˙Λ(t)) + (Λ2(t)Jk + JkΛ
2(t)) + (−2Λ(t)JkΛ(t)) , k = 1, . . . , d. (28)

We may rewrite c̈(t) as

c̈(t) = T1(t) + T2(t)− 2T3(t)
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where Tj(t) is the j-summand of V (t) (∆1(t), . . . ,∆d(t))V (t)T with respect to the decomposition
of ∆k(t) given in (28). More precisely,

T1(t) = V (t)(Λ̇(t)J1 − J1Λ̇(t), . . . , Λ̇(t)Jd − JdΛ̇(t))V (t)T, (29)

T2(t) = V (t)(Λ2(t)J1 + J1Λ
2(t), . . . ,Λ2(t)Jd + JdΛ

2(t))V (t)T, (30)

T3(t) = V (t)(Λ(t)J1Λ(t), . . . ,Λ(t)JdΛ(t))V (t)T. (31)

We recall that the geodesic equation on Flag(n1, . . . , nd;n) is given by

projTc(t)(c̈(t)) = 0.

Therefore, to determine the geodesic equation explicitly, we need to compute the projections of
T1(t), T2(t), T3(t) to Tc(t) Flag(n1, . . . , nd;n) respectively. From Proposition 3.2, T1(t) already lies
in the tangent space Tc(t) Flag(n1, . . . , nd;n). Hence it is sufficient to determine the projections of
T2(t) and T3(t).

Lemma 3.7. Let c(t), T2(t) be as above. The projection of projTc(t)(T2(t)) is zero.

Proof. We first compute Λ2(t)Jk + JkΛ
2(t) for each k = 1, . . . , d. To do this, we partition Λ2(t)

(resp. Jk) as (Γp,q(t)) (resp. (Jk(p, q))) with respect to the partition n = m1 + · · ·+md+1 and we
recall that

Jk(p, q) =

{
(2δpk − 1) Imp , if q = p,

0, otherwise.

Here δpk is the Kronecker delta function. Since Λ(t) is skew-symmetric, Λ2(t) is symmetric. We
have Γq,p = ΓT

p,q. Now the (p, q)-th block of Λ2(t)Jk is

m+1∑
l=1

Γp,lJk(l, q) = Γp,qJk(q, q) = (2δqk − 1)Γp,q

and the (p, q)-th block of JkΛ
2(t) = (Λ2(t)Jk)

T is (2δpk − 1)Γp,q. This implies that the (p, q)-th
block of Λ2(t)Jk + JkΛ

2(t) is

(2δqk − 1)Γp,q + (2δpk − 1)Γp,q = (−2)(1− δpk − δqk)Γp,q.

In particular, if either q 6= p = k or p 6= q = k, we obtain that the (p, q)-th block of Λ2(t)Jk+JkΛ
2(t)

is zero and this implies that projTc(t)(T2(t)) = 0. �

Lemma 3.8. Let c(t), T3(t) be as before. The projection projTc(t)(T3(t)) is

V (t)(X1, . . . , Xd)V (t)T

where for each 1 ≤ k ≤ d, Xk is a symmetric matrix whose (p, q)-th block vanishes for any (p, q)

except (k, d + 1) and (d + 1, k). Moreover if we partition Λ(t) as Λ(t) =

[
Λ0(t) Λ1(t)
−Λ1(t)

T 0

]
where

Λ0(t) ∈ so(n−md+1) and Λ1(t) ∈ R(n−md+1)×m1 we haveX1(1, d+ 1)
...

Xd(d, d+ 1)

 = −Λ0(t)Λ1(t).
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Proof. It is sufficient to compute Xk := Λ(t)JkΛ(t) for each k = 1, . . . , d. We again partition Λ(t)
as (Λ(p, q)(t))dp,q=1 with respect to n = m1 + · · ·+md+1. The (p, q)-th block of Λ(t)JkΛ(t) is

d+1∑
l,s=1

Λ(p, l)(t)Jk(l, s)Λ(s, q)(t) =

d+1∑
l=1

Λ(p, l)(t)Jk(l, l)Λ(l, q)(t)

=

d+1∑
l=1

(2δkl − 1)Λ(p, l)(t)Λ(l, q)(t). (32)

In particular, for 1 ≤ q 6= k ≤ d, the (k, q)-th block of Λ(t)JkΛ(t) is

d+1∑
l=1

(2δkl − 1)Λ(k, l)(t)Λ(l, q)(t),

while the (k, q)-th block of Λ(t)JqΛ(t) is

d+1∑
l=1

(2δql − 1)Λ(k, l)(t)Λ(l, q)(t).

Using Proposition 3.6, we may conclude that the (k, q)-th block of Xk is zero if 1 ≤ k, q ≤ d.
If we take q = d+ 1 and p = k in (32), then the (k, d+ 1)-th block of Xk is

Xk(k, d+ 1) = −
∑

1≤l 6=k≤d
Λ(k, l)(t)Λ(l, d+ 1)(t).

We observe that Xk(k, d+ 1) is the k-th block of the product

−


0 Λ(1, 2)(t) . . . Λ(1, d− 1)(t) Λ(1, d)(t)

Λ(2, 1)(t) 0 . . . Λ(2, d− 1)(t) Λ(2, d)(t)
...

...
. . .

...
...

Λ(d− 1, 1)(t) Λ(d− 1, 2)(t) . . . 0 Λ(d− 1, d)(t)
Λ(d, 1)(t) Λ(d, 2)(t) . . . Λ(d, d− 1)(t) 0




Λ(1, d+ 1)(t)
Λ(2, d+ 1)(t)

...
Λ(d− 1, d+ 1)(t)

Λ(d, d+ 1)(t)

 ,
which can be written in a compact form −Λ0(t)Λ1(t). �

By assembling Lemmas 3.7 and 3.8, we can easily derive the geodesic equation on a flag manifold,
from which we can even obtain an explicit formula for the geodesic curve. In fact, we have the
following:

Proposition 3.9 (geodesics). Let c(t) be a curve on Flag(n1, . . . , nd;n). We parametrize c(t) as

c(t) = V (t)(J1, . . . , Jd)V (t)T,

where V (t) is a curve in O(n). We have the following:

(1) There exists a unique Λ(t) ∈ so(n) such that V̇ (t) = V (t)Λ(t).

(2) If we partition Λ(t) as Λ(t) = (Λ(p, q)(t))d+1,d+1
p,q=1 ∈ so(n) with respect to n = m1+· · ·+md+1,

then Λ(p, p)(t) ≡ 0, p = 1, . . . , d+ 1.
(3) c(t) is a geodesic curve if and only if

Λ̇0(t) = 0, Λ̇1(t) = Λ0(t)Λ1(t). (33)

where Λ0(t) := (Λ(p, q)(t))d,dp,q=1 and Λ1(t) := (Λ(d+ 1, q)(t))dq=1.
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(4) The solution to (33) is

Λ0(t) = Λ0(0), Λ1(t) = exp(tΛ0(0))Λ1(0).

Hence a geodesic curve c(t) is

c(t) = V (t)(J1, . . . , Jd)V
T(t),

where V (t) is a curve in O(n) written as

V (t) = V (0) exp

(
t

[
2X0 X1

−XT
1 0

])[
exp(−tX0) 0

0 Imd+1

]
(34)

for some X0 ∈ so(n−md+1) satisfying X0(k, k) = 0, k = 1, . . . , d and X1 ∈ R(n−md+1)×md+1.

Proof. (1)–(3) and the first half of (4) are obvious from our earlier discussions, hence it is only left
to prove the second part of (4). To that end, we notice that V (t) must satisfy the equation

V̇ (t) = V (t)

[
X0 exp(tX0)X1

−XT
1 exp(−tX0) 0

]
(35)

and [
X0 exp(tX0)X1

−XT
1 exp(−tX0) 0

]
=

[
exp(tX0) 0

0 Imd+1

] [
X0 X1

−XT
1 0

] [
exp(−tX0) 0

0 Imd+1

]
.

If we set W (t) = V (t)

[
exp(tX0) 0

0 Imd+1

]
, then (35) becomes

Ẇ (t) = W (t)

[
2X0 X1

−XT
1 0

]
whose solution is simply W (t) = W (0) exp

(
t

[
2X0 X1

−XT
1 0

])
= V (0) exp

(
t

[
2X0 X1

−XT
1 0

])
. Hence

we obtain that

V (t) = V (0) exp

(
t

[
2X0 X1

−XT
1 0

])[
exp(−tX0) 0

0 Imd+1

]
.

�

We remark that if d = 1, then X0 = 0 in (34) and a geodesic curve on Gr(n1, n) passing through
V J1V

T is

c(t) = V exp

(
t

[
0 X1

−XT
1 0

])
In1,n−n1

(
−t
[

0 X1

−XT
1 0

])
V T,

which coincides with the formula derived in [4].
We again work out the case d = 2 to illustrate the proof of Proposition 3.9. To this end, we

write

Λ(t) =

 0 A(t) B(t)
−AT(t) 0 C(t)
−BT(t) −CT(t) 0

 , A(t) ∈ Rm1×m2 , B(t) ∈ Rm1×m3 , C(t) ∈ Rm2×m3

and suppose that the curve

c(t) = V (t)(J1, J2)V (t)T, V̇ (t) = V (t)Λ(t), V (t) ∈ O(n)

is a curve passing through (J1, J2) with the direction

(Λ(0)J1 − J1Λ(0),Λ(0)J2 − J2Λ(0)) = −2

 0 A(0) B(0)
A(0)T 0 0
BT(0) 0 0

 ,
 0 −A(0) 0
−AT(0) 0 C(0)

0 CT(0) 0

 .
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We write c̈(t) = V (t) (∆1(t),∆2(t))V (t)T where

∆k(t) = (Λ̇(t)Jk − Jk ˙Λ(t)) + (Λ2(t)Jk + JkΛ
2(t)) + (−2Λ(t)JkΛ(t)) .

It is sufficient to compute the projection of Λ(t)JkΛ(t) onto Tc(t) Flag(n1, n2;n), which is

Λ(t)J1Λ(t) =

 ∗ B(t)C(t)T −A(t)C(t)
C(t)B(t)T ∗ ∗
−C(t)TA(t)T ∗ ∗

 ,
 ∗ B(t)C(t)T ∗
C(t)B(t)T ∗ A(t)TB(t)
∗ B(t)TA(t) ∗

 ,

where ∗ denotes those irrelevant blocks. Eventually, we obtain

projTc(t)(ċ(t)) = −2

 0 Ȧ(t) Ḃ(t)−A(t)C(t)

Ȧ(t)T 0 0

Ḃ(t)T − C(t)TA(t)T 0 0

 ,
 0 −Ȧ(t) 0

−ȦT(t) 0 Ċ(t) +A(t)TB(t)

0 Ċ(t)T +B(t)TA(t) 0

 .

Hence the geodesic equation for Flag(n1, n2;n) is

Ȧ(t) = 0, Ḃ(t)−A(t)C(t) = 0, Ċ(t) +A(t)TB(t) = 0,

which can be rewritten in a more compact form:

Ȧ = 0,

[
Ḃ(t)

Ċ(t)

]
=

[
0 A(t)

−AT(t) 0

] [
B(t)
C(t)

]
. (36)

The solution to (36) is

A(t) = A(0),

[
B(t)
C(t)

]
= exp

(
t

[
0 A(0)

−AT(0) 0

])[
B(0)
C(0)

]
.

4. Sub-Riemannian geometry of flag manifolds with modified embeddings

In this section, we discuss the embedded geometry of flag manifolds with respect to a modified
version of the embedding (14). Namely, we define

ι̃ : Flag(n1, . . . , nd;n) ↪→ Gr(n1, n)×Gr(n2 − n1, n) · · · ×Gr(nd − nd−1, n)×Gr(n− nd, n)

({Vk}dk=1) 7→ (W1,W2, . . . ,Wd,Wd+1), (37)

Here Wk is the orthogonal complement of Vk−1 in Vk for 2 ≤ k ≤ d, W1 = Rn1 and Wd+1 is the
orthogonal complement of Vd in Rn. We observe that

ι̃({Vk}dk=1) = (ι({Vk}dk=1),Wd+1).

In other words, ι̃ is simply an extension of ι by tautologically adding the orthogonal complement
of Vd. Since ι is already an embedding, we may easily conclude that ι̃ is also an embedding.

Adopting the convention (15), ι̃ embeds Flag(n1, . . . , nd;n) into
∏d+1
j=1 Gr(mj , n). Moreover, by

Proposition 3.1 we have the following:

Proposition 4.1 (embedding). The image of the embedding

ε̃ : Flag(n1, . . . , nd;n)
ι̃
↪−→

d+1∏
j=1

Gr(mj , n)
τ̃
↪−→ O(n)d+1 (38)

is given by

ε̃ (Flag(n1, . . . , nd;n)) = {(Q1, . . . , Qd+1) ∈
d+1∏
j=1

O(n) : tr(Qj) = 2mj − n,QT
j = Qj

(In +Qj)(In +Qj+1) = 0, j = 1, . . . , d+ 1}. (39)

In particular, we also have

ε̃ (Flag(n1, . . . , nd;n)) = {V (J1, . . . , Jd+1)V
T : V ∈ O(n)} , (40)
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where Jk = diag(− Im1 , · · · ,− Imk−1
, Imk

,− Imk+1
, · · · ,− Imd+1

) is obtained by permuting diagonal
blocks of Imk,n−mk

, k = 1, . . . , d+ 1 and

V (J1, . . . , Jd+1)V
T := (V J1 V

T, . . . , V Jd+1 V
T) .

Similarly to Proposition 3.2 and Corollary 3.3, we also have:

Proposition 4.2. Given a point f̃ := V (J1, . . . , Jd+1)V
T, the tangent space Tf̃ Flag(n1, . . . , nd;n)

consists of vectors V (X1, . . . , Xd+1)V
T ∈

∏d+1
j=1 Sn satisfying

Xk(k, l) = −Xl(k, l), Xk(p, q) = 0, Xk(k, k) = 0, 1 ≤ k, l, p, q ≤ d+ 1 and p, q, l 6= k. (41)

Here Xk(s, t) ∈ Rms×mt is the (s, t)-th block of Xk ∈ Sn when we partition Xk with respect to n =∑d+1
j=1 mj. Moreover, a curve c(t) passing through c(0) = V (J1, . . . , Jd+1)V

T on Flag(n1, . . . , nd;n)
can be locally parametrized as

c(t) = V exp(Λ(t))(J1, . . . , Jd+1) exp(−Λ(t))V T.

For some differentiable curve Λ : (−ε, ε)→ so(n) such that Λ(k, k)(t) ≡ 0.

If d = 2, then a tangent vector of Flag(n1, n2;n) at f̃ can be written as

V

 0 A B
AT 0 0
BT 0 0

 ,
 0 −A 0
−AT 0 C

0 CT 0

 ,
 0 0 −B

0 0 −C
−BT −CT 0

V T,

where A ∈ Rm1×m2 , B ∈ Rm1×m3 , C ∈ Rm2×m3 .

4.1. induced Riemannian metric, normal space and projections. As a submanifold of∏d+1
j=1 O(n), Flag(n1, . . . , nd;n) is equipped with a naturally induced Riemannian metric:

〈V (X1, . . . , Xd+1)V
T, V (Y1, . . . , Yd+1)V

T〉̃f :=
d+1∑
j=1

tr(XjYj) (42)

= 2
d+1∑
k=1

∑
l<k<m

tr(Xk(l, k)Yk(k, l) +Xk(m, k)Yk(k,m)).

Unlike (21) in which some summands are weighted differently, all summands in the new metric
(42) are evenly weighted. For instance, if we take d = 2 then 〈V (X1, X2, X3)V

T, V (Y1, Y2, Y3)V
T〉̃f

is simply

4 (tr(X1(2, 1)Y1(1, 2)) + tr(X1(3, 1)Y1(1, 3)) + tr(X2(3, 2)Y2(2, 3))) . (43)

The distinction between (42) and (21) can be easily observed by comparing (43) with (23).

We notice that the tangent space of
∏d+1
j=1 O(n) at f̃ = V (J1, . . . , Jd+1)V

T is

Tf̃

d+1∏
j=1

O(n)

 =

d+1⊕
j=1

(V JjV
Tso(n)) =

d+1⊕
j=1

(V Jjso(n)V T) .

Proposition 4.3. At a point f̃ := V (J1, . . . , Jd+1)V
T ∈ Flag(n1, . . . , nd;Rn), the normal space

Nf̃ Flag(n1, . . . , nd;n) consists of vectors

V (J1Z1, . . . , Jd+1Zd+1)V
T

where Z1, . . . , Zd ∈ so(n) satisfy the relation

Zk(k, l)− Zl(k, l) = 0, for all 1 ≤ k 6= l ≤ d+ 1.
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In particular, we have a decomposition

Nf̃ Flag(n1, . . . , nd;n) = Nf̃

(
d+1∏
k=1

Gr(mk, n)

)⊕
N0

f̃
, (44)

where Nf̃

(∏d+1
k=1 Gr(mk, n)

)
=
⊕d+1

k=1NV Jmk,n−mk
V T Gr(mk, n) and

N0
f̃

= {V (Jm1,n−m1Z1, . . . , Jmd+1,n−md+1
Zd+1)V

T : Zk ∈ so(n), Zk(k, l)− Zl(k, l) = 0,

Zk(k, k) = 0, Zk(p, q) = 0, 1 ≤ k, l, p, q ≤ d+ 1, p, q 6= k}. (45)

Proposition 4.4 (Projections). Projections from Tf̃

(∏d+1
k=1 O(n)

)
onto Tf̃ Flag(n1, . . . , nd;n) and

Nf̃ Flag(n1, . . . , nd;n) are respectively given by

projT
f̃

: Tf̃

(
d+1∏
k=1

O(n)

)
→ Tf̃ Flag(n1, . . . , nd;n)

V (J1Λ1, . . . , Jd+1Λd+1)V
T 7→ V (X1, . . . , Xd+1)V

T, (46)

and

projN
f̃

: Tf̃

(
d+1∏
k=1

O(n)

)
→ Nf̃ Flag(n1, . . . , nd;n)

V (J1Λ1, . . . , Jd+1Λd+1)V
T 7→ V (Z1, . . . , Zd+1)V

T, (47)

where for each k = 1, . . . , d, Xk ∈ Sn (resp. Zk ∈ Rn×n) is partitioned as (Xk(p, q))
d+1
p,q=1 (resp.

(Zk(p, q))
d+1
p,q=1) with respect to n = m1 + · · ·+md+1 and

Xk(p, q) =


1
2(Λk(k, q)− Λq(k, q)), if p = k 6= q

−1
2(Λk(p, k)− Λp(p, k)), if q = k 6= p

0, otherwise.

Zk(p, q) =


1
2(Λk(k, q) + Λq(k, q)), if p = k 6= q

−1
2(Λk(p, k) + Λp(p, k)), if q = k 6= p

Λk(p, q), otherwise.

As an illustrative example, we take a tangent vector ξ of O(n) × O(n) × O(n) at some point
f = V (J1, J2, J3)V

T, which can be written as

ξ := V

 A B C
BT D E
CT −ET F

 ,
 X Y Z
Y T W S
−ZT ST T

 ,
 L M N
−MT P Q
NT QT R

V T,

where A,X,L ∈ so(m1), D,W,P ∈ so(m2), F, T,R ∈ so(m3), B, Y,M ∈ Rm1×m2 , C,Z,N ∈
Rm1×m3 , E,S,Q ∈ Rm2×m3 . The projection of ξ to Tf̃ Flag(n1, n2;n) is

projT
f̃
(ξ) = V


 0 B−Y

2
C−N

2
BT−Y T

2 0 0
CT−NT

2 0 0

 ,
 0 −B−Y

2 0

−BT−Y T

2 0 S−Q
2

0 ST−QT

2 0

 ,
 0 0 −C−N

2

0 0 −S−Q
2

−CT−NT

2 −ST−QT

2 0


V T

and its projection to Nf Flag(n1, n2;n) is

projNf (ξ) = V


 A B+Y

2
C+N

2
BT+Y T

2 D E
CT+NT

2 −ET F

 ,
 X B+Y

2 Z
BT+Y T

2 W S+Q
2

−ZT ST+QT

2 T

 ,
 L M C+N

2

−MT P S+Q
2

CT+NT

2
ST+QT

2 T


V T
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4.2. geodesics. Assume that c(t) is a curve in Flag(n1, . . . , nd;n), then according to Proposi-
tion 4.2 we may parametrize c(t) as

c(t) = V (t)(J1, . . . , Jd+1)V (t)T (48)

for some differentiable curve V (t) in O(n). Moreover, we have V̇ (t) = V (t)Λ(t) where Λ(t) is a

curve in so(n) partitioned as Λ(t) = (Λ(p, q))d+1
p,q=1 with respect to m1 + · · · + md+1 = n and and

Λ(k, k)(t) ≡ 0, k = 1, . . . , d+ 1. This implies that we have

c̈(t) = T1(t) + T2(t)− 2T3(t),

where Tj(t)’s are respectively given by

T1(t) = V (t)(Λ̇(t)J1 − J1 ˙Λ(t), . . . , Λ̇(t)Jd+1 − Jd+1
˙Λ(t))V T(t), (49)

T2(t) = V (t)(Λ2(t)J1 + J1Λ
2(t), . . . ,Λ2(t)Jd+1 + Jd+1Λ

2(t))V T(t), (50)

T3(t) = V (t)(Λ(t)J1Λ(t), . . . ,Λ(t)Jd+1Λ(t))V T(t). (51)

By similar calculations in proofs of Lemmas 3.7 and 3.8, we may easily obtain the following char-
acterizations of projTc(t)(Tj(t)), j = 1, 2, 3.

Lemma 4.5. Let c(t),Λ(t), T1(t), T2(t), T3(t) be as above. We have

(1) T1(t) ∈ Tc(t) Flag(n1, . . . , nd;n).

(2) projTc(t)(T2(t)) = 0.

(3) projTc(t)(T3(t)) = 0.

Proposition 4.6. Let c(t) be a curve on Flag(n1, . . . , nd;n) parametrized as

c(t) = V (t)(J1, . . . , Jd+1)V (t)T

for some differentiable curve V (t) in O(n). Let Λ(t) be the curve in so(n) such that V̇ (t) = V (t)Λ(t),

where Λ(t) is a curve in so(n) partitioned as Λ(t) = (Λ(p, q))d+1
p,q=1 with respect to m1+· · ·+md+1 = n

and and Λ(k, k)(t) ≡ 0, k = 1, . . . , d + 1. Then c(t) is a geodesic curve if and only if V (t) =
V (0) exp(tΛ(0)).

Proof. Since c(t) is a geodesic if and only if projc(t)(c̈(t)) ≡ 0, Lemma 4.5 implies that c(t) is a
geodesic curve if and only if

Λ̇(t)Jk − Jk ˙Λ(t) = 0, k = 1, . . . , d+ 1.

By (19), we may conclude that c(t) is a geodesic if and only if Λ̇(t) ≡ 0, i.e., Λ(t) = Λ(0). This

implies that V (t) is determined by the equation V̇ (t) = V (t)Λ(0), from which we may conclude
that V (t) = V (0) exp(tΛ(0)). �

5. The comparison of Riemannian metrics on flag manifolds

The goal of this section is to discuss relations among three Riemannian metrics on a flag manifold
Flag(n1, . . . , nd;n). We recall that the two metrics discussed in this paper are respectively induced

by the embedding ε : Flag(n1, . . . , nd;n) ↪→
∏d
k=1 O(n) given in (16) and ε̃ : Flag(n1, . . . , nd;n) ↪→∏d+1

k=1 O(n) given in (38). For notational simplicity, we denote the two induced metrics by ge and
g̃e, respectively. Yet there is another metric induced from the homogeneous space structure of
Flag(n1, . . . , nd;n), which is discussed thoroughly in [5]. We denote this quotient metric by gq.

Proposition 5.1. The Riemaannian metrics g̃e and gq coincide. Moreover, g̃e and ge coincide
with gq when d = 1, in which case Flag(n1, . . . , nd;n) is simply the Grassmann manifold Gr(n1;n).
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We will see in Proposition 5.2 that both ge and g̃e = gq can be constructed by a uniform method.
To begin with, we notice that in general, any smooth map

ϕ :
(
Rn×n

)d → Rn×n

induces an embedding κϕ : (Rn×n)
d → (Rn×n)

d+1
defined by

κϕ(A1, . . . , Ad) = (A1, . . . , Ad, ϕ(A1, . . . , Ad)), Aj ∈ Rn×n, j = 1, . . . , d.

Hence we have another embedding κϕ ◦ ε of Flag(n1, . . . , nd;n) into O(n)d+1 ⊆ (Rn×n)
d+1

, which

induces a metric gϕ on Flag(n1, . . . , nd;n) from the Euclidean metric on (Rn×n)
d+1

.

Proposition 5.2. We have the following:

• gϕ = ge if and only if ϕ is a constant map on ε(Flag(n1, . . . , nd;n)). In particular, gϕ = ge

if ϕ is a constant map.
• There exists ϕ such that gϕ = g̃e.

Proof. The “if” part of the first statement can be verified by a straightforward calculation. For
the “only if” part, we notice that gϕ = ge implies that the differential map d(Q1,...,Qd)ϕ must
be zero on T(Q1,...,Qd)ε(Flag(n1, . . . , nd;n)) at any (Q1, . . . , Qd) ∈ ε(Flag(n1, . . . , nd;n)). Since
ε(Flag(n1, . . . , nd;n)) is connected and ϕ is continuous, we may conclude that ϕ is a constant
map on ε(Flag(n1, . . . , nd;n)).

For the second statement, we notice that C := ε(Flag(n1, . . . , nd;n)) is a compact subset of

X := (Rn×n)
d

and we can define

ψ : C → O(n) ⊆ Rn×n, ψ(Q1, . . . , Qd) = Qd+1,

where (Qd+1 + In)/2 is the projection matrix of
(⊕d

j=1 im(Qj + In)
)⊥

. We denote by pij the

projection map from Rn×n onto its (i, j)-th entry, 1 ≤ i, j ≤ n. It is clear that pij ◦ ψ : C → R
is a smooth function. The compactness of C in X implies that pij ◦ ψ has a smooth extension
ϕij : X → R. Indeed, we can first extend the function pij ◦ ψ smoothly to an open neighbourhood
of C and then further extend it smoothly to the whole X by a smooth partition of unity. Now we
have a smooth map

ϕ := (ϕij) :
(
Rn×n

)d → Rn×n

which extends ψ and hence we have gϕ = g̃e. �

6. An alternating method for optimizations on flag manifolds

Given a strictly increasing sequence n1 < · · · < nd, we define

m1 := n1, md+1 := n− nd, mj := nj − nj−1, j = 2, . . . , d+ 1.

We recall from (37) that a flag {Vk}dk=1 ∈ Flag(n1, . . . , nd;n) can be regarded as {Wj}d+1
j=1 via

the modified embedding ι̃ : Flag(n1, . . . , nd;n) ↪→
∏d+1
j=1 Gr(mj , n), where Wj is the orthogonal

complement of Vj−1 in Vj , 2 ≤ j ≤ d + 1, W1 = V1 and Vd+1 = Rn. Therefore, an optimization
problem on Flag(n1, . . . , nd;n) has the following form:

min f(W1, . . . ,Wd+1)

s.t. Wj ∈ Gr(mj , n), 1 ≤ j ≤ d+ 1 (52)

Wj ⊥Wl, 1 ≤ j < l ≤ d+ 1

Here f is a function on Flag(n1, . . . , nd;n). We propose Algorithm 1, an alternating type algorithm
to solve the problem (52).
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Algorithm 1 Alternating method for optimization on flag manifolds

Input A differentiable function f on Flag(n1, . . . , nd;n)
Output A critical point of f

Initialization Choose an initial point (W1, . . . ,Wd+1) ∈
∏d+1
j=1 Gr(mj , n)

1: while not converge do
2: set (s, t) = (1, 2)
3: for 1 ≤ s < t ≤ d+ 1 do
4: Solve the following sub-problem for (Xs,Xt) ∈ Gr(ms, n)×Gr(mt, n):

min f(W1, . . . ,Ws−1,Xs,Ws+1, . . . ,Wt−1,Xt,Wt+1, . . .Wd+1)

s.t. Xs ⊥ Xt (53)

Xs ⊥Wj , 1 ≤ j 6= s ≤ d+ 1

Xt ⊥Wj , 1 ≤ j 6= t ≤ d+ 1

5: Update (Ws,Wt) by the solution (Xs,Xt) to (53).
6: Update (s, t) by (s+ 1, t) if s+ 1 < t and by (s, t+ 1) otherwise
7: end for
8: end while

We remark that the sub-problem (53) in Algorithm 1 is an optimization problem on a Grassmann
manifold. Indeed, we notice that Wj in (53) is fixed whenever j 6= s, t. This implies

Xs ⊕ Xt =

⊕
j 6=s,t

Wj

⊥
is a fixed (ms + mt)-dimensional subspace of Rn. So the submanifold given by fixed Wj , j 6= s, t
and Xs ⊕ Xt is isomorphic to Gr(ms,ms + mt). This submanifold is actually a totally-geodesic
manifold, which is clear from the geodesic formulas of flag and Grassmann manifolds. Thus the
objective function

f(W1, . . . ,Ws−1,Xs,Ws+1, . . . ,Wt−1,Xt,Wt+1, . . .Wd+1)

can be recognized as a function on this submanifold Gr(ms,ms + mt). Furthermore, at a given
point, there are d(d+ 1)/2 such submanifolds indexed by 1 ≤ s < t ≤ d+ 1. The tangent spaces of
those submanifolds are orthogonal to each other and span the whole tangent space. Algorithm 1 is
a generalization of coordinate descent algorithm in Euclidean space.

6.1. separation of subspaces. Given d + 1 subspaces U1, . . . ,Ud+1 of some ambient space RN .
The separation problem can be mathematically formulated as the following optimization problem
on a flag manifold:

min F (W) :=

d+1∑
j=1

‖τj(Uj)− τj(Wj)‖2F

s.t. Wj ∈ Gr(mj , n), 1 ≤ j ≤ d+ 1 (54)

Wj ⊥Wl, 1 ≤ j < l ≤ d+ 1

Here mj = dimUj , 1 ≤ j ≤ d+1, n =
∑d+1

j=1 mj and τj is the embedding of Gr(mj , n) into O(n)∩Sn
defined by

τj(W) = V

− Ip 0 0
0 Imj 0
0 0 − Iq

V T
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where p =
∑j−1

l=1 ml, q =
∑d+1

l=j+1ml and V = [v1, . . . , vn] = [V1, . . . , Vd+1] ∈ O(n) such that

[vp+1, . . . , vq−1] = Vj , span{vp+1, . . . , vq−1} = Wג.

Lemma 6.1. Consider the maximization of linear function f(Q) = 〈A,Q〉 on the Grassmann
manifold,

max 〈A,Q〉
s.t. Q ∈ Gr(k, n)

The gradient of f(Q) is given by

∇f(Q) =
1

4
(A+AT −QAQ−QATQ).

Let (A + AT)/2 = UΛUT be an eigendecomposition of (A + AT)/2 such that Λ = diag(λ1, . . . , λn),
λ1 ≥ · · · ≥ λn. Then Q∗ = UIk,n−kU

T is a maximizer of f(Q). Furthermore,

2‖Λ‖(f(Q∗)− f(Q)) ≥ ‖∇f(Q)‖2.

Proof. The formula for gradient is given in [4, Proposition 5.1]. The original problem is equivalent
to

max 〈Λ, Q〉
s.t. Q ∈ Gr(k, n)

and we need to prove Q = Ik,n−k is a maximizer. Using gradient formula, we can simplify the first
order condition ∇f(Q∗) = 0 to

Q∗Λ = ΛQ∗.

So Q∗, A can be simultaneously diagonalized, and we can assume Q∗ is diagonalized. The original
problem is equivalent to

min
δ1+···+δn=2k−n,δi=±1

λ1δ1 + · · ·+ λnδn.

It is clear that δ1 = · · · = δk = 1, δk+1 = · · · = δn = −1 is a maximizer. So Q∗ = Ik,n−k is a
maximizer. Now consider the last inequality. The term ‖∇f(Q)‖2, f(Q∗)− f(Q) can be simplified

‖∇f(Q)‖2 =
1

4
〈Λ−QΛQ,Λ−QΛQ〉

=
1

2

n∑
i=1

λ2i −
1

2
tr(ΛQΛQ)

=
1

2
tr(ΛQ∗ΛQ∗)− 1

2
tr(ΛQΛQ),

f(Q∗)− f(Q) = 〈Λ, Q∗〉 − 〈Λ, Q〉.

For any c > 2‖Λ‖, we have

c(f(Q∗)− f(Q))− ‖∇f(Q)‖2 = c〈Λ, Q∗〉 − c〈Λ, Q〉 − tr(ΛQ∗ΛQ∗)/2 + tr(ΛQΛQ)/2

= g(Q∗)− g(Q),

where g(Q) = c〈Λ, Q〉−tr(ΛQΛQ)/2. Assume Q∗∗ is a maximizer of g(Q). The first order condition
of g(Q) is

Q∗∗ΛQ∗∗ΛQ∗∗ − cQ∗∗ΛQ∗∗ − ΛQ∗∗Λ + cΛ = 0,

which is equivalent to

(Q∗∗Λ− ΛQ∗∗)(Q∗∗Λ + ΛQ∗∗ − cI) = 0.
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By definition c > 2‖Λ‖ ≥ ‖Q∗∗Λ + ΛQ∗∗‖, so Q∗∗Λ + ΛQ∗∗− cI is invertible and Q∗∗Λ = ΛQ∗∗. So
Q∗∗,Λ can be simultaneously diagonalized. We can assume Q∗∗ is diagonalized. So

g(Q∗∗) =
n∑
i=1

(2‖Λ‖λiδi −
1

2
λ2i ),

where δi is the diagonal of Q∗∗. Again, Q∗ is a maximizer of g(Q). So we have proved that
g(Q∗) ≥ g(Q), i.e.,

c(f(Q∗)− f(Q))− ‖∇f(Q)‖2 ≥ 0.

Because c is any number larger than 2‖Λ‖, it also holds for c = 2‖Λ‖ and the proof is finished. �

Proposition 6.2. If we apply Algorithm 1 to solve the problem (54), then for each 1 ≤ s < t ≤ d+1,
the sub-problem has the form

min ‖A1 −W Ims,mt W
T‖2F + ‖A2 +W Ims,mt W

T‖2F (55)

s.t. W ∈ O(ms +mt)

where A1, A2 ∈ O(ms + mt) ∩ Sms+mt are some fixed matrices. Moreover, the sub-problem has an
explicit solution W∗ which is given by the SVD of A1 −A2, A1 −A2 = W∗ΣW

T
∗ .

Denote the change of the value of F at this step by ∆s,t. By previous discussion, the full gradient
∇F can be partition into d(d− 1)/2 components ∇s,tF that corresponds to the subproblems. Then

‖τs(Us)− τt(Ut)‖|∆s,t| ≥ ‖∇s,tF‖2.

Proof. Given 1 ≤ s < t ≤ d+ 1, the sub-step in (54) is

min ‖τs(Us)− τs(Ws)‖2F + ‖τt(Ut)− τt(Wt)‖2F
s.t. (Ws,Wt) ∈ Gr(ms,ms +mt)×Gr(mt,ms +mt)

Ws ⊥Wt

In particular, Ws⊕Wt =
(⊕

j 6=s,tWj

)⊥
is a fixed (ms +mt)-dimensional vector space represented

by Vs,t := [Vs, Vt]. We use V ⊥ to denote the basis of
(⊕

j 6=s,tWj

)⊥
. The choice of Ws,Wt can be

further specified by a orthogonal matrix W ∈ O(ms +mt) so that Vs,tW = [Ws,Wt] where Ws,Wt

span Ws,Wt respectively. As a result, the images of Ws,Wt can be written as

τs(Ws) = Vs,tW Ims,mt W
TV T

s,t + V ⊥(V ⊥)T, τt(Wt) = −Vs,tW Ims,mt W
TV T

s,t + V ⊥(V ⊥)T.

The desired (55) follows easily by taking A1 = V T
s,tτs(Us)Vs,t, A2 = V T

s,tτt(Ut)Vs,t.
Next we observe that the objective function in (55) can further be re-written as

‖A1‖2F + ‖A2‖2F + 2(ms +mt)− 2〈A1,W Ims,mt W
T〉+ 2〈A2,W Ims,mt W

T〉
=‖A1‖2F + ‖A2‖2F + 2(ms +mt) + 2〈A2 −A1,W Ims,mt W

T〉.

Therefore, the problem (55) is equivalent to

min 〈A2 −A1,W Ims,mt W
T〉 (56)

s.t. W ∈ O(ms +mt)

By previous lemma, we may conclude that a solution to (56) is W∗, which can be obtained by the
SVD of A1 −A2. Furthermore,

‖∇s,tF‖2 ≤ ‖A2 −A1‖|∆s,t| ≤ ‖τs(Us)− τt(Ut)‖|∆s,t|.

�
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Theorem 6.3. Consider a randomized version of Algorithm 1 for problem (54). At each step,
choose (si, ti) uniformly from all possible (s, t). Let Wi be the point at step i. Then with probability
1, every cluster point of Wi is a stationary point. (Because flag manifold is compact, cluster point
exists.)

Proof. If ‖τs(Us)− τt(Ut)‖ = 0 for all s, t, then the function is trivial and there is nothing to prove.
Otherwise, there is a set A ⊆ {(s, t) | 1 ≤ s < t ≤ d + 1} such that ‖τs(Us) − τt(Ut)‖ 6= 0 if and
only if (s, t) ∈ A. At each step i, assume argmax(s,t)∈A ‖∇s,tF (Wi)‖ is achieved for (s∗, t∗). If

(si, ti) = (s∗, t∗), then

F (Wi)− F (Wi+1) ≥
‖∇s∗,t∗F (Wi)‖2

‖τs∗(Us∗)− τt∗(Ut∗)‖

≥ max ‖∇s,tF (Wi)‖2

max ‖τs(Us)− τt(Ut)‖
≥ C‖∇F (Wi)‖2,

where C is a constant independent of Wi. If (si, ti) 6= (s∗, t∗), at least we have F (Wi)−F (Wi+1) ≥ 0.
So

EF (Wi)− EF (Wi+1) ≥
2C

n(n− 1)
‖∇F (Wi)‖2.

Summing from i = 0 to ∞, and take expectation, we have

E[F (W0)− lim
i→∞

F (Wi)] ≥ C ′E
∞∑
i=0

‖∇F (Wi)‖2.

So with probability 1,
∑∞

i=0 ‖∇F (Wi)‖2 exists and ‖∇F (Wi)‖ converges to 0. Any cluster point
must be a stationary point. �

7. Numerical experiments

In this section, we consider the function

f(V ) =

d∑
k=1

tr(V T
k AkVk),

where Ai is randomly generated symmetric matrix, Vi is the submatrix of V with index 1 ≤ i ≤
n, nk−1 < j ≤ nk, i.e., the basis of Wk. This function is clearly a function on the flag manifold
Flag(n1, . . . , nd;n).

We choose Flag(5, 5; 200) and test five methods: (i) gradient descent method under classical
embedding metric; (ii) gradient descent method under modified embedding metric; (iii) coordinate
gradient descent method under modified embedding metric; (iv) gradient descent method using the
quotient model proposed in Algorithm 1 in [5]; (v) coordinate minimization method under modified
metric (Algorithm 1). Figure 1 shows the convergence rate averaged over 10 simulations. We also
record the running time to hit ‖∇f(V )‖ ≤ 10−5, averaged over 10 simulations, as shown in Table
1.

Method (ii) is equivalent to (iv), and their convergence rate and running time are similar. All
four descent method has comparable performance while the coordinate minimization outperforms
them significantly.

The coordiante minimization method works best for this special choice of f(V ) because the
optimization sub-problem has explicit solution and can be solved sufficiently. For more general
problems, it might not be the case. However, This special choice of f covers many common
problems appeared in flag manifolds optimization. Most notably, it is equivalent to the projection
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(i) Classic Descent 21.428s
(ii) Modified Descent 11.291s
(iii) Coordinate Descent 25.548s
(iv) Quotient Descent 10.238s
(v) Coordinate Minimization 0.552s

Table 1. Running time to hit ‖∇f(V )‖ ≤ 10−5 of different methods.

Figure 1. Convergence behavior of different methods.

problem under modified embedding 54. As a result, the extrinsic sample mean problem [1] for flag
manifold under modified embedding can be solved efficiently.
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Appendix A. Parallel transport with respect to the classical embedding

Let c(t) be a curve on Flag(n1, . . . , nd;n) parametrized as

c(t) = V (t)(J1, . . . , Jd)V (t)T.

Here V (t) is a curve in O(n) and hence V̇ (t) = V (t)Λ(t) for some Λ(t) ∈ so(n). If we partition Λ(t)

as Λ(t) = (Λ(j, k))d+1,d+1
j,k=1 with respect to n = m1+ · · ·+md+1, then Λ(k, k)(t) ≡ 0, k = 1, . . . , d+1.
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We notice that by Proposition 3.2 a vector field Y (t) on Flag(n1, . . . , nd;n) along the curve c(t)
can be parametrize as

Y (t) = V (t)(X(t)J1 − J1X(t), . . . , X(t)Jd − JdX(t))V (t)T, (57)

where X(t) = (X(j, k))d+1,d+1
j,k=1 ∈ so(n) is the partition of X(t) with respect to n = m1 + · · ·+md+1

and X(k, k)(t) ≡ 0, k = 1, . . . , d+ 1. We recall that Y (t) is the parallel transport of Y (0) along c(t)
if and only if

projTc(t)(Ẏ (t)) = 0.

By differentiating (57), we obtain

Ẏ (t) = V (t)(∆1(t), . . . ,∆d(t))V
T(t),

where

∆k(t) = (Ẋ(t)Jk − JkẊ(t)) + Λ(t)(X(t)Jk − JkX(t))− (X(t)Jk − JkX(t))Λ(t)

= (Ẋ(t)Jk − JkẊ(t)) + (Λ(t)X(t)Jk + JkX(t)Λ(t))− (Λ(t)JkX(t) +X(t)JkΛ(t)).

Similar to what we have done in Subsection 3.3, we set

T1(t) = V (t)(Ẋ(t)J1 − J1Ẋ(t), . . . , Ẋ(t)Jd − JdẊ(t))V (t)T, (58)

T2(t) = V (t)(Λ(t)X(t)J1 + J1X(t)Λ(t), . . . ,Λ(t)X(t)Jd + JdX(t)Λ(t))V T(t), (59)

T3(t) = V (t)(Λ(t)J1X(t) +X(t)J1Λ(t), . . . ,Λ(t)JdX(t) +X(t)JdΛ(t))V T(t), (60)

thus Ẏ (t) = T1(t) + T2(t)− T3(t). By definition, we conclude that T1(t) ∈ Tc(t) Flag(n1, . . . , nd;n)

and hence to determine projTc(t)(Ẏ (t)), it is sufficient to compute projTc(t)(T2(t)) and projTc(t)(T3(t))

respectively.

Lemma A.1. There exists some symmetric matrices W1, . . . ,Wd where

Wk(p, q) =


∑d+1

s=1 X(k, s)Λ(s, q)−
∑d+1

s=1 Λ(s, k)TX(q, s)T, if p = k, q 6= k,∑d+1
s=1 Λ(s, p)TX(k, s)T −

∑d+1
s=1 X(p, s)Λ(s, k), if q = k, p 6= k,

0, otherwise

such that projTc(t)(T2(t)) = V (t)(W1(t), . . . ,Wd(t))V
T(t).

Proof. For each k = 1, . . . , d, we first compute Λ(t)X(t)Jk+JkX(t)Λ(t). Indeed, since X(t),Λ(t) ∈
so(n) and Jk is a diagonal matrix, we have

JkX(t)Λ(t) = (Λ(t)X(t)Jk)
T .

Therefore we only need to compute Λ(t)X(t)Jk. To do so, we partition Λ(t) and X(t) as

Λ(t) = (Λ(p, q)), X(t) = (X(p, q)), 1 ≤ p, q ≤ d+ 1. (61)

The (p, q)-th entry of JkX(t)Λ(t) is

d+1∑
l,s=1

Jk(p, l)X(l, s)Λ(s, q) =
d+1∑
s=1

Jk(p, p)X(p, s)Λ(s, q)

= (2δpk − 1)
d+1∑
s=1

X(p, s)Λ(s, q).

Hence the (p, q)-th block of Λ(t)X(t)Jk + JkX(t)Λ(t) is simply

(2δpk − 1)

d+1∑
s=1

X(p, s)Λ(s, q) + (2δqk − 1)

d+1∑
s=1

Λ(s, p)TX(q, s)T.
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In particular, for q 6= k, the (k, q)-th block of Λ(t)X(t)Jk + JkX(t)Λ(t) is

d+1∑
s=1

X(k, s)Λ(s, q)−
d+1∑
s=1

Λ(s, k)TX(q, s)T

and if moreover that q ≤ d, then the (k, q)-th block of Λ(t)X(t)Jq + JqX(t)Λ(t) is

−

(
d+1∑
s=1

X(k, s)Λ(s, q)−
d+1∑
s=1

Λ(s, k)TX(q, s)T

)
.

This implies that

projTc(t)(T2(t)) = V (t)(W1(t), . . . ,Wd(t))V
T(t),

where

Wk(p, q) =


∑d+1

s=1 X(k, s)Λ(s, q)−
∑d+1

s=1 Λ(s, k)TX(q, s)T, if p = k, q 6= k,∑d+1
s=1 Λ(s, p)TX(k, s)T −

∑d+1
s=1 X(p, s)Λ(s, k), if q = k, p 6= k,

0, otherwise.

�

Lemma A.2. There exists symmetric matrices Z1, . . . , Zd where

Zk(p, q) =


−
∑

1≤l≤d,l 6=k (X(k, l)Λ(l, d+ 1) + Λ(l, k)TX(d+ 1, l)T) , if p = k, q = d+ 1,

−
∑

1≤l≤d,l 6=k (X(d+ 1, l)Λ(l, k) + Λ(l, d+ 1)TX(k, l)T) , if p = d+ 1, q = k,

0, otherwise.

such that projTc(t)(T3(t)) = V (t)(Z1(t), . . . , Zd(t))V
T(t).

Proof. We compute Λ(t)JkX(t) +X(t)JkΛ(t) for each k = 1, . . . , d. We partition Λ(t) and X(t) as
in (61) respectively. We also notice that

X(t)JkΛ(t) = (Λ(t)JkX(t))T

so that it is sufficient to compute X(t)JkΛ(t). The (p, q)-th block of X(t)JkΛ(t) is

d+1∑
l,s=1

X(p, l)Jk(l, s)Λ(s, q) =
d+1∑
l=1

X(p, l)Jk(l, l)Λ(l, q)

=
d+1∑
l=1

(2δkl − 1)X(p, l)Λ(l, q)

Hence the (p, q)-th block of Λ(t)JkX(t) +X(t)JkΛ(t) is∑
1≤l≤d+1,l 6=p,q

(2δkl − 1) (X(p, l)Λ(l, q) + Λ(l, p)TX(q, l)T) .

In particular, for q 6= k, the (k, q)-th block of Λ(t)JkX(t) +X(t)JkΛ(t) is

−
∑

1≤l≤d+1,l 6=k,q
(X(k, l)Λ(l, q) + Λ(l, k)TX(q, l)T)

which is the same as the (k, q)-th block of Λ(t)JqX(t) + X(t)JqΛ(t) if moreover q ≤ d. Hence we
have

projTc(t)(T3(t)) = V (t)(Z1(t), . . . , Zd(t))V (t)T,



24 Z. LAI, L.-H. LIM, AND K. YE

where for each 1 ≤ k ≤ d,

Zk(p, q) =


−
∑

1≤l≤d,l 6=k (X(k, l)Λ(l, d+ 1) + Λ(l, k)TX(d+ 1, l)T) , if p = k, q = d+ 1,

−
∑

1≤l≤d,l 6=k (X(d+ 1, l)Λ(l, k) + Λ(l, d+ 1)TX(k, l)T) , if p = d+ 1, q = k,

0, otherwise.

�

Proposition A.3 (parallel transport along any curve). Let c(t) = V (t)(J1, . . . , Jd)V (t)T be a curve
on Flag(n1, . . . , nd;n) and let Y (t) be a vector field along the curve c(t), parametrized as in (57).
Then Y (t) is a parallel transport if and only for each pair (k, q) such that 1 ≤ k < q ≤ d + 1, we
have

−2Ẋ(k, q)+
∑

1≤s≤d+1
s 6=k,q

(X(k, s)Λ(s, q)− Λ(k, s)X(s, q))+δq,d+1

∑
1≤l≤d
l6=k

(X(k, l)Λ(l, d+ 1) + Λ(k, l)X(l, d+ 1)) = 0, (62)

which can be written in a more compact form:

2Ẋ = π ([X,Λ]) +

[
0 X0Λ1 + Λ0X1

−(X0Λ1 + Λ0X1)
T 0

]
, (63)

where X0,Λ0 ∈ R(n−nd+1)×(n−nd+1), X1,Λ1 ∈ R(n−nd+1)×nd+1 are submatrices determined by parti-
tions

X =

[
X0 X1

−XT
1 0

]
, Λ =

[
Λ0 Λ1

−ΛT
1 0

]
,

and π(A) is defined by setting all diagonal blocks of A ∈ so(n) equal to zero.

Before we proceed, we remark that in particular if X = Λ, then [X,Λ] = 0 and (63) reduces to
the geodesic equation (33).

Next we re-write each term of (62) using (12). This leads to

vec (X(k, s)Λ(s, q)) = (Λ(s, q)T ⊗ Imk
) vec(X(k, s)) = −(Λ(q, s)⊗ Imk

) vec(X(k, s))

vec (Λ(s, k)TX(q, s)T) = (Imq ⊗Λ(s, k)T) vec(X(q, s)T) = (Imq ⊗Λ(k, s)) vec(X(s, q))

and hence (62) becomes

2 vec
(
Ẋ(k, q)

)
= −

∑
1≤s≤d+1
s6=k,q

(
(Imq

⊗Λ(k, s)) vec(X(s, q)) + (Λ(q, s)⊗ Imk
) vec(X(k, s))

)
+ δq,d+1

∑
1≤s≤d
s6=k

(
(Imd+1

⊗Λ(k, s)) vec(X(s, d+ 1))− (Λ(d+ 1, s)⊗ Imk
) vec(X(k, s))

)
,

which using relations X(p, q) = −X(q, p)T and vec(AT) = K(m,n) vec(A)1, can be written as
vec(Ẋ(1, 2))

vec(Ẋ(1, 3))
· · ·

vec(Ẋ(d− 1, d))

 = Φ(t)


vec(X(1, 2))
vec(X(1, 3))

· · ·
vec(X(d, d+ 1))

 (64)

for some
(
n
2

)
×
(
n
2

)
matrix function Φ(t). Now according to Theorem 2.5, (64) can be solved by

Peano–Baker series associated to the coefficient matrix Φ(t).
We again take d = 2 for example. In this case, we write

Λ(t) =

 0 A(t) B(t)
−AT(t) 0 C(t)
−BT(t) −CT(t) 0

 , A(t) ∈ Rm1×m2 , B(t) ∈ Rm1×m3 , C(t) ∈ Rm2×m3 ,

1K(m,n) is the commutation matrix defined in (13).
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X(t) =

 0 U(t) V (t)
−UT(t) 0 W (t)
−V T(t) −W T(t) 0

 , U(t) ∈ Rm1×m2 , V (t) ∈ Rm1×m3 ,W (t) ∈ Rm2×m3 .

Then we have

projTc(t)(T1(t)) = 2V (t)

 0 −U̇(t) −V̇ (t)

−U̇T(t) 0 0

−V̇ T(t) 0 0

 ,
 0 U̇(t) 0

U̇T(t) 0 −Ẇ (t)

0 −Ẇ T(t) 0

V (t)T,

projTc(t)(T3(t)) = V (t)

 0 0 −(A(t)W (t) + U(t)C(t))
0 0 0

−(A(t)W (t) + U(t)C(t))T 0 0

 ,
0 0 0
0 0 A(t)TV (t) + U(t)TB(t)

0 V (t)TA(t) +B(t)TU(t) 0

V (t)T.

projTc(t)(T2(t)) = V (t)

 0 B(t)W (t)T − V (t)C(t)T −A(t)W (t) + U(t)C(t)

W (t)B(t)T − C(t)V (t)T 0 0
−W (t)TA(t)T + C(t)TU(t)T 0 0

 ,
 0 −B(t)W (t)T + V (t)C(t)T 0

−W (t)B(t)T + C(t)V (t)T 0 A(t)TV (t)− U(t)TB(t)
0 V (t)TA(t)−B(t)TU(t) 0

V (t)T.

Hence the system for X(t) to be a parallel transport is given by

2U̇(t) = −V (t)C(t)T +B(t)W (t)T = (−C(t)⊗ Im1) vec(V (t)) + (Im2 ⊗B(t))K(m2,m3) vec(W (t)),

V̇ (t) = U(t)C(t) = (C(t)T ⊗ Im1) vec(U(t)),

Ẇ (t) = −U(t)TB(t) = −(B(t)T ⊗ Im2) vec(U(t)).

Hence we havevec(U̇(t))

vec(V̇ (t))

vec(Ẇ (t))

 =

 0 −1
2C(t)⊗ Im1

1
2(Im2 ⊗B(t))K(m2,m3)

C(t)T ⊗ Im1 0 0
−B(t)⊗ Im2 0 0

vec(U(t))
vec(V (t))
vec(W (t))

 .
Appendix B. Parallel transport with respect to the modified embedding

Now we proceed to discuss the parallel transport of a tangent vector along a curve on a flag
manifold. Again we parametrize a curve c(t) on Flag(n1, . . . , nd;n) as (48). Let Y (t) be a vector
field on Flag(n1, . . . , nd;n) along the curve c(t). Then we may correspondingly parametrize Y (t)
as

Y (t) = V (t)(X(t)J1 − J1X(t), . . . , X(t)Jd+1 − Jd+1X(t))V (t)T, (65)

where X(t) = (X(j, k))d+1,d+1
j,k=1 ∈ so(n) is the partition of X(t) with respect to n = m1 + · · ·+md+1

and X(k, k)(t) ≡ 0, k = 1, . . . , d+ 1. We notice that Ẏ (t) = T1(t) + T2(t)− T3(t) where

T1(t) = V (t)(Ẋ(t)J1 − J1Ẋ(t), . . . , Ẋ(t)Jd+1 − Jd+1Ẋ(t))V T(t), (66)

T2(t) = V (t)(Λ(t)X(t)J1 + J1X(t)Λ(t), . . . ,Λ(t)X(t)Jd+1 + Jd+1X(t)Λ(t))V T(t), (67)

T3(t) = V (t)(Λ(t)J1X(t) +X(t)J1Λ(t), . . . ,Λ(t)Jd+1X(t) +X(t)Jd+1Λ(t))V T(t). (68)

Similar computations in proofs of Lemmas A.1 and A.2 lead to the following

Lemma B.1. Let c(t),Λ(t), Y (t), X(t), T1(t), T2(t), T3(t) be as above. We have

(1) T1(t) ∈ Tc(t) Flag(n1, . . . , nd;n).
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(2) projTc(t)(T2(t)) = V (t)(W1(t), . . . ,Wd+1(t))V
T(t), where

Wk(p, q) =


∑d+1

s=1 X(k, s)Λ(s, q)−
∑d+1

s=1 Λ(s, k)TX(q, s)T, if p = k, q 6= k,∑d+1
s=1 Λ(s, p)TX(k, s)T −

∑d+1
s=1 X(p, s)Λ(s, k), if q = k, p 6= k,

0, otherwise.

(3) projTc(t)(T3(t)) = 0.

Now we recall that Y (t) is a parallel transport along the curve c(t) if and only if projc(t)(Ẏ (t)) = 0.
Combining this with Lemma B.1, we may derive the equation for parallel transport.

Proposition B.2 (Parallel transport along any curve). Let c(t),Λ(t), Y (t), X(t) be as above. The
vector field Y (t) along c(t) is a parallel transport if and only if

Ẋ(t) =
1

2
π ([X(t),Λ(t)]) , (69)

where π(A) is the matrix obtained by setting all diagonal blocks equal to zero for A ∈ so(n).

In particular, if c(t) = V (t)(J1, . . . , Jd+1)V
T(t) is a geodesic, then Proposition 4.6 implies V̇ (t) =

V (t)A for some constant matrix A ∈ so(n), from which we obtain the following characterization of
a parallel transport along a geodesic in Flag(n1, . . . , nd;n).

Corollary B.3 (Parallel transport along a geodesic). If c(t) = V (t)(J1, . . . , Jd+1)V
T(t) is the

geodesic curve passing through V (0)(J1, . . . , Jd+1)V
T(0) with the tangent direction

V (0)(AJ1 − J1A, . . . , AJd+1 − Jd+1A)V T(0), A ∈ so(n), A(k, k) = 0, k = 1, . . . , d+ 1,

then the parallel transport Y (t) of

Y (0) = V (0)(BJ1 − J1B, . . . , BJd+1 − Jd+1B)V T(0), B ∈ so(n), B(k, k) = 0, k = 1, . . . , d+ 1,

is
Y (t) = V (t)(X(t)J1 − J1X(t), . . . , X(t)Jd+1 − Jd+1X(t))V T(t),

where

Ẋ(t) =
1

2
π ([X(t), A]) , X(0) = B,

where π(A) is the matrix obtained by setting all diagonal blocks equal to zero for A ∈ so(n).
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