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Abstract

With the fast development of big data, it has been easier than before to learn the optimal

decision rule by updating the decision rule recursively and making online decisions. We study

the online statistical inference of model parameters in a contextual bandit framework of sequen-

tial decision-making. We propose a general framework for online and adaptive data collection

environment that can update decision rules via weighted stochastic gradient descent. We allow

different weighting schemes of the stochastic gradient and establish the asymptotic normality

of the parameter estimator. Our proposed estimator significantly improves the asymptotic ef-

ficiency over the previous averaged SGD approach via inverse probability weights. We also

conduct an optimality analysis on the weights in a linear regression setting. We provide a

Bahadur representation of the proposed estimator and show that the remainder term in the

Bahadur representation entails a slower convergence rate compared to traditional SGD due to

the adaptive data collection.

Keywords: online inference, stochastic gradient descent, contextual bandits, Bahadur representa-

tion, quantile regression

1 Introduction

Following the seminal work of Robbins (1952), the stochastic multi-armed bandit problem has been

studied extensively in the literature, where an agent aims to make optimal decisions sequentially
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among multiple arms and only the selected arm reveals rewards consequently. As the agent’s choice

is often influenced by additional covariates, also referred to as contexts, contextual bandit problems

have gained renewed attention in the past decades (Woodroofe, 1979; Langford and Zhang, 2007,

etc.). With the development of internet and data technology, contextual bandit algorithms play

an important role in sequential decision-making applications, such as online advertisement (Li

et al., 2010), precision medicine (Kim et al., 2011), e-commence (Qiang and Bayati, 2016; Chen

et al., 2022), and public policy (Kasy and Sautmann, 2021). Such decisions are often referred to as

recommendations, treatments, interventions, and public orders, while the rewards can be healthcare

outcomes, welfare utility, revenue as well as any measure of satisfaction of decisions.

Most contextual bandit algorithms are built with the goal of learning the best action under

different contexts. In sequential settings, it is often formulated as minimizing the expected cu-

mulative regret that the practitioner would have received if she knows the optimal action. While

the importance of this regret minimization is undisputed, reliable uncertainty quantification of the

learned decision rule is evidently important in many featured applications. For example, in a

personalized medicine application where the intervention decision is to choose t‘’he best medical

treatment to optimize some health outcome, the risk for the selected treatment plays a critical and

even sometimes life-threatening role in decision-making. Such examples call for the crucial need

for a valid and reliable statistical inference procedure accompanying the decision-making process

to provide guidance on policy interventions. Inferential studies help not only prompt risk alerts

in recommendations, but also gain scientific knowledge of questions such as the effectiveness of

medicines.

Particularly, consider a linear contextual bandit environment where the observed data at each

decision point t is a triplet ζt = (Xt, At, Yt) for all t ≥ 1, consisting of covariate Xt, action At,

and reward Yt = X>t θ
∗
At

+ εt where θ∗At ∈ Rd is unknown parameters of interest governed by a

finite set of actions A, and εt ∈ R is the noise under certain modeling assumptions. For illustrative

simplicity, we consider a binary action space A = {0, 1} corresponding to a duplet of underlying

model parameters (θ∗0, θ
∗
1) ∈ Rd × Rd, and actions At ∈ A are selected according to a policy

At ∼ π (Xt,Ht−1) where Ht−1 denotes the trajectory of observations until time t−1. At the time t,

a typical policy π prefers the action with a higher mean reward X>t θ
∗
a for a ∈ A, while reserving a
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small probability to explore a random action to avoid potential myopic short-sighted exploitation.

For example, in the widely-used ε-greedy policy,

P
(
At = a | Xt, θ0,t−1, θ1,t−1

)
= (1− ε)1

{
a = arg max

a∈A
X>t θa,t−1

}
+
ε

2
, (1)

This procedure heavily relies on a series of estimators (θ0,t−1, θ1,t−1) on-the-fly, of the underlying

model parameters. Despite that a return-oriented policy would undoubtedly favor the action with a

higher reward, it is often as crucial to obtain the confidence of decisions, i.e., conducting statistical

inference for (θ∗0, θ
∗
1) in the prescribed applications. This model of statistical inference of model

parameters in decision-making problems appears recently in literature (See e.g., Chen, Lu and

Song, 2021a; Zhang, Janson and Murphy, 2021, and a brief survey in Section 1.1 below). A typical

inferential task provides a confidence interval of the underlying parameters (θ∗0, θ
∗
1) or significance

levels when testing hypotheses of parameters, or its margin θ∗1 − θ∗0.

Since the sequential decision-making problem relies on updating the estimator for every t

throughout the horizon, it is important to provide a computationally efficient fully-online algorithm

for both estimation and inference purposes. The existing literature of sequential decision-making

mostly focuses on the convergence rate and efficiency, while computational efficiency and storage

applicability of the estimation algorithm is often optimistically neglected. As such, they often

provide online decision-making procedures governed by an offline scheme of parameter estimation.

At each iteration t, an “offline” M -estimator (θ0,t, θ1,t) is often obtained using the sample path

{(X1, y1), (X1, y2), . . . , (Xt, yt)} up to time t. For example, when using the linear estimator, the

computation cost accumulates in a non-scalable manner to at least O(T 3) over the entire horizon

T .

To facilitate computationally efficient online inference, we adopt the stochastic gradient descent

(SGD) algorithms in conducting statistical inference in fully-online decision-making. SGD, dated

back to Robbins and Monro (1951), has been widely used in large-scale stochastic optimization

thanks to its computational and storage efficiency. Its averaged version (ASGD) enables the statis-

tical inference (Polyak and Juditsky, 1992), and inference procedures have been recently analyzed

by (Chen et al., 2020; Fang, Xu and Yang, 2018; Lee et al., 2022a, and others). A detailed survey

of SGD inference is provided in Section 1.1 below. SGD fits well into the online decision-making
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scheme, as the underlying parameter (θ∗0, θ
∗
1) is the solution to the following stochastic optimization

under certain modeling assumptions,

θ∗a ∈ argmin
θ∈Rd

E
[
`
(
θ; (Xt, Yt)

)
| At = a

]
, a ∈ A, (2)

where the function ` ∈ Rd → R will be constructed according to different modeling assumptions.

For example, in a linear contextual bandit Yt = X>t θ
∗
At

+ εt with i.i.d. covariates Xt and mean-zero

noise {εt}, a natural choice of `
(
θ; (Xt, Yt)

)
=
(
yt −X>t θ

)2
is the squared loss. As the outcome Yt

at every time t is adaptively collected upon the decision of action At, only one of the
(
θ0,t, θ1,t

)
is

updated. To compensate missing updates, a generalized SGD updates

θt = θt−1 − ηtwt∇`
(
θt−1; (Xt, Yt)

)
. (3)

with a weighting parameter wt determined by the decision policy π(Xt,Ht−1). This procedure

first appeared in Chen, Lu and Song (2021b) where they used the inverse probability weighting

(IPW) for an ε-greedy policy (See (11) below for the explicit form of the IPW). As a consequence,

the weighted stochastic gradient wt∇`
(
θt−1; (Xt, Yt)

)
is proved to be an unbiased estimator of

a weighted population loss function where the weight is independent to the entire the historical

information. While the unbiasedness property of stochastic gradient and its independence from the

prior trajectory clear the technical difficulty of theoretical analysis of the asymptotic normality of

the IPW-weighted ASGD estimator, IPW increases its asymptotic variance by a factor of 1/ε. With

such a factor, the proposed algorithm leads to a highly-volatile estimator in practice and entails

an overly wide confidence interval while making inferential calls. Designing ameliorate decision-

making algorithms to enhance the asymptotic efficiency of the estimator remains challenging yet

important.

In this paper, we allow a general choice of the weighting parameter wt in (3), which admits

IPW weights as a special case, and derive the explicit formula for the asymptotic distribution of

the generalized-weighting ASGD algorithm, thus provides us a way to compare different choices of

wt and even optimize over wt for some simple models. Our proposed estimator greatly improves

the asymptotic efficiency over IPW-ASGD and achieves comparable efficiency as if the practitioner

picks one arm steadily. This estimator helps construct narrow yet reliable confidence intervals
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for the underlying parameter of interest. The analysis also reveals a recommendation of optimal

choices of weights wt in certain policies. To overcome the technical challenge raised in dependent

weighting parameters, we propose a new definition of the loss function, which is different from the

loss function used in classical SGD literature (e.g., Chen et al., 2020) and adaptive SGD literature

(Chen, Lu and Song, 2021b). We use two parameters θ and θ′ to separate the effect of weighting

parameters in SGD and that of decision-making procedures in the local geometric landscape of the

loss function.

As a separate interest, our framework allows non-smooth loss functions such as quantile loss.

In contrast to linear regression, quantile regression provides estimates of a range of conditional

quantiles of the reward Yt. Since contextual bandit problems often appear in an interactive envi-

ronment, the underlying reward model is more likely to differ across the distribution of the rewards

and contexts or involves outliers. Linear regression methods estimate only the mean effects which is

usually an incomplete summary of the effect of exposures for certain outcomes. For example, when

recommending health care interventions, associations between health care and health outcomes can

be highly different among individuals at high-, median-, and low-level utilization of health care.

Quantile regression finds ubiquitous applications in many fields such as operations management of

business inventory and risk management of financial assets Rockafellar and Uryasev (2002); Ban

and Rudin (2019). Therefore, it is worth exploring the use of quantile-based objective functions in

sequential decision-making problems. In this paper, we establish a general framework that allows

certain nonsmooth objective functions including quantile regression.

We emphasize the technical challenges and summarize the methodology contribution and the-

oretical advances in the following facets.

• We study the online statistical inference of model parameters in a contextual bandit framework

of sequential decision-making. We adopt the existing fully-online re-weighting algorithm for

SGD but extend it in two directions: for a general choice of weights and handling non-smooth

loss functions via stochastic subgradient. An important example is the quantile loss functions

with applications in newsvendor problems and risk management. Moreover, this example

provides robustness due to the fact that the objective function is globally Lipschitz. We

5



establish the asymptotic normality result and characterize how the asymptotic covariance

depends on the weight choice.

• We show that SGD under ε-greedy policies with inverse probability weighting (IPW) in Chen,

Lu and Song (2021b) suffers from an unbounded asymptotic variance when the exploration

rate, ε is close to 0, i.e., the relative efficiency of adaptive models versus non-adaptive models

diverges to infinity. Our proposed algorithm features a general policy with a flexible specifi-

cation of the weights to avoid such deficiency and obtain a bounded relative efficiency. We

further provide some practical insights into the optimal weight specification.

• Beyond the asymptotic normality of the proposed estimator, we further establish an analysis

of the higher-order remainder term in its Bahadur representation. In classical i.i.d. SGD

settings, the essential part of the remainder term achieves the rate of O
(
t−

α
2

)
, which can

be arbitrarily close to the order of the regular offline M -estimator under smooth objectives

as α gets close to 1. On the contrary, under the adaptive decision-making environment, the

reminder term has a slower rate of O
(
t−α+

1
2 + t−

α
4

)
. As α approaches 1, the remainder term

gets closer to O
(
n−

1
4

)
, which matches the rate of some nonsmooth M -estimators. This slower

rate can be considered as the effect of the discontinuous indicator function for the ε-greedy

policy.

1.1 Related works

Online statistical inference for model parameters in SGD The asymptotic distribution of

averaged stochastic gradient descent (ASGD) is first given in Ruppert (1988) in Polyak and Juditsky

(1992). Since then, there has been a rapid growth of interest recently in conducting statistical

inference for model parameters in stochastic gradient algorithms. Chen et al. (2020) proposed

two online estimators (plug-in and batch-means) in constructing estimators of limiting covariance

matrix of ASGD, of which Zhu, Chen and Wu (2021) extended the batch-means to overlapped

batches. Fang, Xu and Yang (2018) proposed a perturbation-based resampling procedure to conduct

inference for ASGD. Su and Zhu (2018) proposed a tree-structured inference scheme to construct

confidence intervals. Lee et al. (2022a,b) generalized the results in Polyak and Juditsky (1992) to a
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functional central limit theorem and proposed an online inference procedure called random-scaling

for smooth objectives and quantile regression, respectively.

Statistical inference in online decision-making problems Chen, Lu and Song (2021a) stud-

ied the asymptotic distribution of the parameters under a linear contextual bandit framework.

Deshpande et al. (2018); Khamaru et al. (2021) considered adaptive linear regression where the

vector contexts are correlated over time. Zhang, Janson and Murphy (2021, 2022) conducted sta-

tistical inference for M-estimators in contextual bandit and non-Markovian environments. Hao

et al. (2019) used multiplier bootstrap to offer uncertainty quantification for exploration in the

bandit settings. Chen, Lu and Song (2021b) conducted statistical inference of the model parame-

ters via SGD. There also exists related statistical inference literature in reinforcement learning as a

well-known online decision-making setting. Ramprasad et al. (2022) conducted statistical inference

for TD (and GTD) learning. Shi et al. (2021) constructed the confidence interval for policy val-

ues in Markov decision processes. Shi et al. (2022) conducted statistical inference for confounded

Markov decision processes. Chen, Song and Jordan (2022) developed the confidence interval for

heterogeneous Markov decision processes.

1.2 Notations and organization of the paper

We first introduce some notations in our paper. For any pair of positive integers m < n, we use

[m : n] as a shorthand for the discrete set of {m,m + 1, . . . , n}. For any vector θ ∈ Rd, we use

θ[m:n] to denote the vector consisting of the m-th to n-th coordinates of θ. Similarly, θ[m:n],t is the

corresponding subvector of θt.

For convenience, let ‖ · ‖ denote the standard Euclidean norm for vectors and the spectral

norm for matrices. We use the standard Loewner order notation Σ � 0 if a matrix Σ is positive

semi-definite. Denote Id as the identity matrix in Rd×d. For any square matrix Σ, λmin(Σ) and

λmax(Σ) represent the smallest and the largest eigenvalues, respectively. We also introduce 1(·) for

the indicator function, and . is used for inequalities with omitted constants.

The remainder of the paper is organized as follows. In Section 2, we consider the environment

where we collect data adaptively. We describe the weighted version SGD under this setting and
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give two illustrative examples of the classical regression problems. In Section 4, we first introduce

the technical assumptions before we present the asymptotic distribution for general weighted SGD

under this adaptive data collection scheme, along with a comparison on the statistical efficiency to

the previous result proposed in Chen, Lu and Song (2021b). We further justify our assumptions

under the two illustrative regression examples and show the asymptotic normality for these two

cases. Section 4.1 gives the finite-sample rate for our SGD update under adaptive environment. We

compare our result with the traditional SGD rate, where the slower rate is due to the adaptively

collected data. Simulation studies and real data analyses in Section 5 lend numerical support to

the theoretical claims in this paper, which also provides hands-on guidelines to practitioners.

2 Problem Setup

We consider a contextual bandit environment where the observed data at each decision point

t is a triplet ζt = (Xt, At, Yt) for all t ≥ 1, consisting of covariate Xt, action At, and reward

Yt. In this paper, we consider a finite action space, i.e., At ∈ A and |A| < ∞. We assume a

stochastic contextual bandit environment in which {Xt, Yt(A) : A ∈ A} i.i.d∼ P ∈ P for all t ≥ 1.

The contextual bandit environment distribution P is in a space of possible environment distributions

P.

We define the trajectory until time t as Ht := {Xs, As, Ys}ts=1 for t ≥ 1 and H0 := ∅. Actions

At ∈ A are selected according to some policy At ∼ π (Xt,Ht−1), which defines action distribution.

Even though the covariate reward tuples are i.i.d., the observed data {Xt, At, Yt}t≥1 are not because

the actions are selected using policies π (Xt,Ht−1) which is a function of past data, Ht−1. Non-

independence of observations is a key property of adaptively collected data.

We are interested in constructing confidence regions for some unknown θ∗ ∈ Rd. Specifically,

we assume that θ∗ is a conditionally maximizing value of some loss function `(θ; ζ), i.e., for P ∈ P,

θ∗(P) ∈ argmin
θ∈Rd

EPY |X [` (θ; ζ) | X,A] . (4)

Note that θ∗ does not depend on (X,A) and it is an implicit modeling assumption that such a θ0

exists for a given `(θ; ζ). note that under the finite action space setting where |A| < ∞, θ∗ is the

concatenated vector of all optimal θ for each A ∈ A, and this implicit assumption is very natural.
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For example, in a classical regression setting, a natural choice for `(θ; ζ) is as follows,

`(θ; ζt) = ρ
(
Yt −XT

t θAt
)
,

where θ ∈ Rd is the concatenated vector of θAt ∈ Rp for all possible choices of At ∈ A and d = p|A|.

Here ρ(·) is some convex loss function. Under the linear regression case, the ρ(·) is the quadratic

loss function and under the quantile regression setting, ρτ (u) = u(τ − 1(u < 0)) with a given

0 < τ < 1.

In this paper, we would like to conduct estimation and statistical inference for the unknown

θ∗ given our adaptively collected data. Let θ0 denote any given initial estimation, the stochastic

gradient descent scheme (SGD) (Robbins and Monro, 1951) iteratively updates the parameter as

follows,

θt = θt−1 − ηt∇`(θt−1; ζt), (5)

where ηt is a positive non-increasing sequence referred to as the step-size sequence and ∇` is the

gradient for smooth individual loss function `. Note that ` can be non-smooth as long as ∇` exists

almost surely. For the SGD update above, under the traditional i.i.d. setting where ζt = (Xt, Yt),

the classical result by Polyak and Juditsky (1992) uses the average θ̄
(SGD)
t = t−1

∑t−1
s=0 θs as the final

estimator to accelerate the estimation. They characterize the limiting distribution and statistical

efficiency of the averaged SGD, i.e.,

√
t
(
θ̄
(SGD)
t − θ∗

)
=⇒ N

(
0, H(SGD)−1S(SGD)H(SGD)−1),

given a series of predetermined learning rates ηt = η0t
−α for η0 > and 0.5 < α < 1. Here H(SGD)

and S(SGD) are the Hessian and Gram matrix at θ = θ∗ for some population loss function under

traditional i.i.d. setting. The asymptotic covariance H(SGD)−1S(SGD)H(SGD)−1 is often known as

the “sandwich” covariance structure. For model well-specified settings, this asymptotic covariance

matrix matches the inverse Fisher information matrix and thus the resulting averaged estimator

θ̄
(SGD)
t is asymptotically efficient.

We now provide some popular statistical models as illustrative examples, and we will refer to

these examples throughout the paper.
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Example 2.1 (Linear Regression). Consider a two-arm linear contextual bandit problem where

E[Yt | At, Xt] = (1−At)
(
X>t θ

∗
[1:p]

)
+At

(
X>t θ

∗
[p+1:2p]

)
,

where θ∗ ∈ Rd is the concatenated vector of θ∗[1:p] and θ∗[p+1:2p] and θ∗[1:p] 6= θ∗[p+1:2p], {Xt, Yt(A) : A ∈ A}
i.i.d∼ P ∈ P for all t ≥ 1. The true reward Yt is generated by E[Yt | At, Xt] + Et where {Et} are i.i.d.

random error with mean zero and variance σ2.

Under linear regression model, our loss function ` is defined as

`(θ; ζt) =
1

2
(1−At)(Yt −X>t θ[1:p])2 +

1

2
At(Yt −X>t θ[p+1:2p])

2.

To address the exploration-and-exploitation dilemma, we consider the traditional ε-greedy policy

where the probability of action At is defined as,

P(At = 0 | Xt, θt−1) = (1− ε)1{X>t θ[1:p],t−1 > X>t θ[p+1:2p],t−1}+
ε

2
, (6)

for some constant ε ∈ (0, 1). In practice, the ε is often set as some small constant close to zero.

Note that this setting can be relaxed to a deterministic sequence {εt} which converges to some

constant ε∞ ∈ (0, 1).

Example 2.2 (Quantile Regression). Under the same data generating process in Example 2.1,

E[Yt | At, Xt] = (1−At)X>t θ∗[1:p] +AtX
>
t θ
∗
[p+1:2p].

The true reward Yt is generated by E[Yt | At, Xt] + Et where {Et} are i.i.d. random error such that,

P(E ≤ 0) = τ for some given quantile level τ ∈ (0, 1). Now consider a quantile loss such that

`(θ; ζt) = (1−At)ρτ (Yt −X>t θ[1:p]) +Atρτ (Yt −X>t θ[p+1:2p]),

where ρτ (u) = u(τ − 1(u < 0)).

3 SGD with weighted stochastic gradients

Under our adaptive data collection scheme, we now consider a generalized version of the vanilla

SGD (5). The following is an SGD update with weighted stochastic gradient under adaptively
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collected data setting,

θt = θt−1 − ηtwt∇`(θt−1; ζt). (7)

Here the gradient weights wt only depends on the triplet (At, Xt, θt−1). For example, in the previous

work of (Chen, Lu and Song, 2021b), wt = 1/2π (Xt, θt−1).

Given our path of {θt}t≥1, we assume the policy π (Xt,Ht−1) depend on the history Ht−1 only

through θt−1, our estimator from the latest step, i.e., At ∼ π (Xt, θt−1). One of the common

algorithms following this rule is ε-greedy. Note that this can be relaxed to At ∼ π (Xt,Φt−1) for

some statistic Φt−1 relies on the history θ0, · · · , θt−1 and it converges to θ∗ when θt converges to

θ∗. Another common algorithm in the classical contextual bandit literature fall under this relaxed

setting is Thompson sampling.

To facilitate our analysis of the asymptotic behavior of SGD update (7), we define the function

Lθ′(θ) as follows,

Lθ′(θ) = EP
[
Eπ(X,θ′)

(
w(θ′;X,A)`(θ;X,A, Y ) | X

)]
, (8)

where A ∼ π(X, θ′), θ′, θ ∈ Rd, and gradient weight w depending on θ′, action A and covariate X.

Below we will always use the expression ∇Lθ′(θ) to represent the partial gradient of Lθ′(θ) with

respect to the variable θ, i.e.,

∇Lθ′(θ) =
∂

∂θ
Lθ′(θ) ∈ Rd, ∇2Lθ′(θ) =

∂2

∂θ2
Lθ′(θ) ∈ Rd×d.

Finally, we denote ξθ′(θ; ζ) as the gap between our weighted SGD update and the population

gradient of our loss defined in (8), i.e.,

ξθ′(θ; ζ) = w(θ′;X,A)∇`(θ; ζ)−∇Lθ′(θ), (9)

By definition, we can easily verify that w(θ′;X,A)∇`(θ; ζ) is an unbiased estimator of ∇Lθ′(θ),

E[ξθ′(θ; ζ)] = 0.

In the previous work of Chen, Lu and Song (2021b), the loss function is defined with respect to

some pre-determined stable policy πstable, i.e.,

L̃(θ) = EP [Eπstable (`(θ;X,A, Y ) | X)] , (10)
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where A ∼ πstable and πstable is a Bernoulli(1/|A|), uniformly distributed on the action space A. To

match the SGD update with the loss function L̃(·), they choose the IPW weighted SGD such that

wt = πstable
π(X,θ) . This weighting scheme corrects the sampling distribution of the action At towards

the Bernoulli distribution under the stable policy. However, this definition cannot be extended

to a general weighting scheme and the resulting asymptotic covariance matrix could be extremely

large as we will see in the discussion after Theorem 4.2 in Section 4. Our framework allows a much

broader class of weighting schemes, and our theoretical analysis relies heavily on our definition of

the loss function Lθ′(θ) in (8). By expressing the loss using two different variables θ and θ′, we

separate the loss `(θ; ζ) from the policy π(X, θ′) and the weight w(θ′;X,A), as we have a focus on

the local geometry of `(θ; ζ) instead of the local geometry of π(X, θ′) and w(θ′;X,A).

We now revisit the two aforementioned motivating examples and illustrate the weighted SGD

algorithm for the two models.

Example 2.1 (Continued). Under the linear regression model, the weighted SGD (7) writes as

θ[1:p],t = θ[1:p],t−1 − ηtwtXt(X
>
t θ[1:p],t−1 − Yt), At = 0;

θ[p+1:2p],t = θ[p+1:2p],t−1 − ηtwtXt(X
>
t θ[p+1:2p],t−1 − Yt), At = 1.

Example 2.2 (Continued). Under the quantile regression model, the weighted SGD (7) writes as

θ[1:p],t = θ[1:p],t−1 + ηtwt

[
τ − 1(Yt −X>t θ[1:p],t−1 < 0)

]
Xt, At = 0;

θ[p+1:2p],t = θ[p+1:2p],t−1 + ηtwt

[
τ − 1(Yt −X>t θ[p+1:2p],t−1 < 0)

]
Xt, At = 1.

Some typical choices of gradient weight wt are the inverse probability weighting (IPW) intro-

duced in Chen, Lu and Song (2021b) which corrects the action distribution to some deterministic

stable policy,

wt(At, Xt, θt−1) =
1

2P(At | Xt, θt−1)
, (11)

as well as the square-root importance weights used in Hammersley (2013) and Zhang, Janson and

Murphy (2021),

wt(At, Xt, θt−1) =

√
1

2P(At | Xt, θt−1)
. (12)
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3.1 Optimal weights in linear regression settings

Under the linear model where X is normally distributed (see Remark 4.1), we consider a class of

power functions fγ(ε) = εγ . This class of weights covers the IPW-type weighted SGD (11) where

γ = −1, the square-root importance weighted SGD (12) where γ = −1/2, and the vanilla SGD (5)

where γ = 0 (all up to some constants). It is possible to write down the expression for S and H

under this setting, i.e.,

S =

S1 0

0 S2

 , H =

H1 0

0 H2

 ,
where

S1 = σ2
[
(1− ε

2
)f2(1− ε

2
)G∗1 +

ε

2
f2(

ε

2
)G∗2

]
, S2 = σ2

[ε
2
f2(

ε

2
)G∗1 + (1− ε

2
)f2(1− ε

2
)G∗2

]
,

H1 = (1− ε

2
)f(1− ε

2
)G∗1 +

ε

2
f(
ε

2
)G∗2, H2 =

ε

2
f(
ε

2
)G∗1 + (1− ε

2
)f(1− ε

2
)G∗2,

and G∗1, G
∗
2 are defined at θ′ = θ∗, i.e.,

G∗1 = Φ (a∗) Ip +
1√
2π
a∗e

a∗2
2

(θ∗[1:p] − θ
∗
[p+1:2p])(θ

∗
[1:p] − θ

∗
[p+1:2p])

>∥∥∥θ∗[1:p] − θ∗[p+1:2p]

∥∥∥2 ,

G∗2 = (1− Φ (a∗)) Ip −
1√
2π
a∗e

a∗2
2

(θ∗[1:p] − θ
∗
[p+1:2p])(θ

∗
[1:p] − θ

∗
[p+1:2p])

>∥∥∥θ∗[1:p] − θ∗[p+1:2p]

∥∥∥2 ,

a∗ =
µ>(θ∗[p+1:2p] − θ

∗
[1:p])√∥∥∥θ∗[p+1:2p] − θ

∗
[1:p]

∥∥∥2 + (µ>(θ∗[1:p] − θ
∗
[p+1:2p]))

2

.

Here the existence of G∗1 and G∗2 are assured by the implicit non-degenerate model assumption such

that θ∗[1:p] 6= θ∗[p+1:2p].

Denote v to be the vector (θ∗[1:p] − θ
∗
[p+1:2p])/‖θ

∗
[1:p] − θ

∗
[p+1:2p]‖. Since H1, H2, G1, G2 all have

the form bI + cvv> for some constants b and c, they can be simultaneously diagonalized by a set

of basis v, v1, . . . , vp−1 with corresponding eigenvalues {b+ c, b, b, . . . , b}, where {vi}p−1i=1 can be any

(p−1) orthonormal vectors in the (p−1)-dimensional space that is orthogonal to v. We can further

express H−1SH−1 as follows,

H−1SH−1 = σ2

c1I + c2vv
> 0

0 c3I + c4vv
>

 , (13)
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where

c1 =
(1− ε

2)1+2γΦ(a) + ( ε2)1+2γ(1− Φ(a))

((1− ε
2)1+γΦ(a) + ( ε2)1+γ(1− Φ(a)))2

,

c2 =
(1− ε

2)1+2γ(Φ(a) + 1√
2π
ae

a2

2 ) + ( ε2)1+2γ(1− Φ(a)− 1√
2π
ae

a2

2 )

((1− ε
2)1+γ(Φ(a) + 1√

2π
ae

a2

2 ) + ( ε2)1+γ(1− Φ(a)− 1√
2π
ae

a2

2 ))2
− c1,

c3 =
(1− ε

2)1+2γ(1− Φ(a)) + ( ε2)1+2γΦ(a)

((1− ε
2)1+γ(1− Φ(a)) + ( ε2)1+γΦ(a))2

,

c4 =
(1− ε

2)1+2γ(1− Φ(a)− 1√
2π
ae

a2

2 ) + ( ε2)1+2γ(Φ(a) + 1√
2π
ae

a2

2 )

((1− ε
2)1+γ(1− Φ(a)− 1√

2π
ae

a2

2 ) + ( ε2)1+γ(Φ(a) + 1√
2π
ae

a2

2 ))2
− c3.

The eigenvalues of the asymptotic covariance matrix are c1, c1+c2, c3, c3+c4 in the above equations.

Notice that this result matches the result in Chen, Lu and Song (2021b), as their IPW-type weighted

SGD can be seen as a special case in our framework. In practice, for the ε-greedy policy, the

parameter ε is usually taken as some sufficiently small constant close to zero and the covariance

of IPW-SGD estimator would be much larger. The proposed algorithm overcomes this problem by

allowing a much broader set of weight schemes. It can be inferred from (13) that γ ≥ −1/2 gives

a finite covariance matrix even when ε is close to zero. This includes the vanilla SGD (5) and the

square-root importance weighted SGD (12) but excludes IPW-SGD. In fact, all the eigenvalues of

the asymptotic covariance matrix have the following form with respect to γ, i.e.,

g(γ) =
(1− ε)1+2γb+ ε1+2γ(1− b)
((1− ε)1+γb+ ε1+γ(1− b))2

, b ∈ (0, 1).

Therefore, the minimum is obtained at γ = 0 for all b ∈ (0, 1). Therefore, we can conclude

that under the settings in Remark 4.1, the vanilla SGD has an asymptotic covariance matrix

that is strictly better than any other asymptotic covariance matrix obtained from a power-law

weighted scheme, f(ε) = εγ . The following Remark 3.1 concludes the above discussion, with

detailed derivation relegated to the supplementary material. This analysis can be further extended

to general policies and any weighting scheme w under the linear regression setting with respect to

different weights.

Remark 3.1 (Optimal weights in linear regression). Under Assumption 1 to Assumption 5, the

vanilla SGD with weight 1 has the optimal asymptotic covariance matrix in the linear regression
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setting, i.e., Σval � Σ̃, where Σval is the asymptotic covariance matrix of vanilla SGD and Σ̃ is any

other asymptotic covariance matrix.

4 Asymptotic normality

We provide the main theoretical results in this section with detailed proof relegated to the supple-

mentary material. We first introduce some regularity assumptions on the population loss function

Lθ′(θ), the individual loss function `(θ; ζ), and the gradient weight w(θ′;X,A).

Assumption 1. There exists some constants w,w, such that 0 < w < wt < w for all t ≥ 1.

Assumption 2. The loss function Lθ′(θ) is convex with respect to θ ∈ Rd, continuously differen-

tiable with respect to θ ∈ Rd, and twice continuously differentiable with respect to θ at θ∗. Moreover,

there exists some constants δ, λ > 0, such that 〈∇Lθ(θ), θ − θ∗〉 > 0, ∀θ 6= θ∗ and

〈∇Lθ(θ), θ − θ∗〉 ≥ λ‖θ − θ∗‖2, ∀ θ ∈ {θ : ‖θ − θ∗‖ ≤ δ}.

Assumption 3. The Hessian matrix ∇2Lθ′(θ) ∈ Rd×d exists for all (θ; θ′) ∈ Rd × Rd and the

Hessian matrix at (θ∗; θ∗) is positive definite, i.e., H , ∇2Lθ∗(θ∗) � 0. Moreover, the Hessian

matrix ∇2Lθ′(θ) is K-Lipschitz continuous at (θ∗, θ∗), i.e.,

∥∥∇2Lθ′(θ)−∇2Lθ∗(θ∗)
∥∥ ≤ K‖θ − θ∗‖+K‖θ′ − θ∗‖,

for all (θ, θ′) such that ‖θ − θ∗‖+ ‖θ′ − θ∗‖ ≤ 2δ.

Assumption 4. For any action A ∈ A and covariate X, we further assume,

EPY |X
(
‖∇`(θ; ζ)‖2 | X,A

)
≤ φ(X)(1 + ‖θ − θ∗‖2),

for some function φ(·) such that E[φ(X)] = κ for some constant κ > 0. We also assume the Gram

matrix of ξθ′(θ; ζ) at (θ∗; θ∗), S , E[ξθ∗(θ
∗; ζ)ξθ∗(θ

∗; ζ)>], exists.

Assumption 5. Let ∆(X, θ) = dTV (π(X, θ), π(X, θ∗)) be the total variation distance of π(X, θ)

and π(X, θ∗). For function φ(X) defined in Assumption 4, we have limθ→θ∗ EPX [∆(X, θ)φ(X)] = 0,

lim
θ→θ∗

EPY |X
[
‖∇`(θ; ζ)−∇`(θ∗; ζ)‖2 | X,A

]
= 0, lim

θ→θ∗
EPX

[
|w(θ;X,A)− w(θ∗;X,A)|2φ(X) | A

]
= 0.
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Assumption 1 is a common assumption on the weights applied to the stochastic gradient, which

is used in many adaptive setting literature, e.g., Chen, Lu and Song (2021a), Chen, Lu and Song

(2021b), and Zhang, Janson and Murphy (2021). The convexity and continuity on the population

loss L in Assumption 2 is a standard requirement in traditional SGD literature (Polyak and Ju-

ditsky, 1992; Chen et al., 2020; Chen, Lu and Song, 2021b; Duchi and Ruan, 2021). We can also

find similar arguments in the SGD literature mentioned above for Assumption 2 to Assumption 4,

whereas we generalize the previous assumptions on our loss function Lθ(θ) with an extra variable

θ′. Assumption 5 further gives some regularity on the function φ(·) defined in Assumption 4. Later

we will further verify our assumptions on the two examples we mentioned above, i.e., the linear

regression and the quantile regression. It is noteworthy to mention that, in Assumption 4 and

Assumption 5, we only implicitly assume ∇` exists almost surely under PY |X . Therefore, our as-

sumption is not restricted to smooth loss function `, it also covers many non-smooth statistical

problems like quantile regression and robust regression.

In the Remark 4.1 below, we illustrate our definition of Lθ′(θ) and our assumptions above using

a special case where the covariate X follows a normal distribution.

Remark 4.1. Under the settings in Example 2.1 with the ε-greedy policy (6). Assume X follows

a standard normal distribution, i.e., Xt ∼ N (µ, Ip). Assume wt(At, Xt, θt−1) is a function of

P(At | Xt, θt−1) for some smooth function f(·), i.e., wt(At, Xt, θt−1) = f(P(At | Xt, θt−1)). We

have for any ε,

Lθ′(θ) = (θ∗ − θ)>G(θ∗ − θ) +
σ2

2

[
(1− ε

2
)f(1− ε

2
) +

ε

2
f(
ε

2
)
]
,

where we denote Φ(·) as the c.d.f. for standard normal distribution and

G =

(1− ε
2)f(1− ε

2)G1 + ε
2f( ε2)G2 0

0 (1− ε
2)f(1− ε

2)G2 + ε
2f( ε2)G1

 .
G1 = Φ (a) Ip +

1√
2π
ae

a2

2 ν ′ν ′>, G2 = (1− Φ (a)) Ip −
1√
2π
ae

a2

2 ν ′ν ′>,

where ν ′ is the normalized margin between the two arms of θ′,

ν ′ = (θ′[1:p] − θ
′
[p+1:2p])/

∥∥∥θ′[1:p] − θ′[p+1:2p]

∥∥∥ , and a =
µ>ν ′√

1 + (µ>ν ′)2
.
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We now state our first main result that characterizes the limiting distribution of the averaged

weighted SGD iterates defined in (7).

Theorem 4.2. Under Assumption 1 to Assumption 5, the averaged SGD estimator θ̄t converges

θ∗ almost surely when t→∞ and

√
t(θ̄t − θ∗)→ N (0, H−1SH−1),

where H = ∇2Lθ∗(θ∗) and S = E[ξθ∗(θ
∗; ζ)ξθ∗(θ

∗; ζ)>].

We relegate the proof of Theorem 4.2 to Section A of the supplementary materials. To emphasize

the technical challenge in the theoretical analysis, our loss function L in (8) is not defined by the

stable policy as in the prior works (Chen, Lu and Song, 2021b). The action At ∼ π(Xt, θt−1) and

A∗ ∼ π(Xt, θ
∗) are no longer in the same probability space, and therefore we specify a coupling

between At and A∗ to compare them. A natural choice is the coupling such that

∆(X, θ) = dTV (π(X, θ), π(X, θ∗)) =
1

2

|A|∑
i=1

|pi − qi| = P(A 6= A∗), (14)

where pi = P(A = Ai), qi = P(A∗ = Ai).

To further illustrate our assumptions and central limit theorem result in Theorem 4.2, we

validate them under two examples we mentioned above, i.e., linear regression (Example 2.1) and

quantile regression (Example 2.2). We will show that under ε-greedy policy defined in Equation (6),

Theorem 4.2 holds for these two cases.

In Corollary 4.3 below, we demonstrate that Assumptions 1–5 are quite natural and can be

satisfied by the linear regression example we discussed in Example 2.1.

Corollary 4.3. Consider the linear setting defined in Example 2.1, assume that

(a) The covariate X has finite EPX‖X‖4 and EPX [XX>] � 0;

(b) The probability density function of X, p(x), is smooth and
∫
x>θ∗

[1:p]
=x>θ∗

[p+1:2p]
x⊗ x⊗ xp(x) dx

exists;
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(c) For the gradient weights {wt} defined in (7), assume wt(At, Xt, θt−1) is a function of P(At |

Xt, θt−1), i.e.,

wt(At, Xt, θt−1) = f(P(At | Xt, θt−1)),

for some Lipschitz continuous function f(·) : R 7→ R and f(·) is positive and bounded within

interval (0, 1).

Under the above conditions, Assumptions 1–5 are satisfied and the asymptotic normality in Theo-

rem 4.2 exists.

As discussed earlier, our assumption allows a much broader setting than the class of smooth

individual loss functions. Under our assumptions, the individual loss function `(θ; ζ) can be non-

smooth. We will justify this argument in the quantile regression example below.

Corollary 4.4. Consider the quantile regression setting defined in Example 2.2, assume that

(a) The covariate X has finite EPX [XX>] and EPX [XX>] � 0;

(b) The p.d.f. of X, denoted as p(x), is smooth and
∫
x>θ∗

[1:p]
=x>θ∗

[p+1:2p]
x⊗ x⊗ xp(x) dx exists;

(c) The p.d.f. of E, denoted as q(x), is smooth and bounded. Also, q(0) > 0 and q′(x) is bounded;

(d) For the gradient weights {wt} defined in (7), assume wt(At, Xt, θt−1) is a function of P(At |

Xt, θt−1), i.e.,

wt(At, Xt, θt−1) = f(P(At | Xt, θt−1)),

for some Lipschitz continuous function f(·) : R 7→ R and f(·) is positive and bounded within

interval (0, 1).

Under above conditions, the Assumption 1 to Assumption 5 are satisfied and the asymptotic nor-

mality in Theorem 4.2 exists.

Corollary 4.4 states that we can also obtain the limiting distribution for some non-smooth loss

functions like a quantile loss.
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Remark 4.5. In Corollary 4.3 and Corollary 4.4 above, we use the ε-greedy policy with fixed

constant ε ∈ (0, 1) throughout the whole SGD process. This policy can be relaxed to a general

εt-greedy policy, for some deterministic sequence {εt} varying with respect to time t, such that

εt ∈ (0, 1) and εt → ε∞. The asymptotic normality result also holds under this setting, we defer

the discussion and technical details to Section D in the supplementary material.

In order to provide statistical inference for the model parameter, we need to estimate the

variance of θ̂t, H
−1SH−1, as we established in Theorem 4.2, in a fully online fashion. A few

options have been provided from SGD inference literature, e.g., the plug-in estimator (Chen et al.,

2020; Chen, Lu and Song, 2021b), the batch-means estimator (Chen et al., 2020; Zhu, Chen and

Wu, 2021), the bootstrap estimator (Fang, Xu and Yang, 2018), the random scaling estimator (Lee

et al., 2022a). Among the above, the plug-in estimator is expected to achieve the best numerical

behavior as evident from classical SGD approaches. In this paper, we use the plug-in estimator

Chen et al. (2020) for smooth loss functions `, and leave the other methods as an interesting future

work. In adaptive settings, the online plugin estimators for S and H are given by,

Ŝn =
1

n

n∑
t=1

w2
t∇`(θt−1; ζt)∇`(θt−1; ζt)>, Ĥn =

1

n

n∑
t=1

wt∇2`(θt−1; ζt).

With the plug-in estimators (Ŝt, Ĥt), an online plug-in inference procedure can be provided by

replacing S and H in the asymptotic covariance matrix in Theorem 4.2 to (Ŝt, Ĥt). We defer the

detailed procedure to Section 5.2 below and the consistency proof of these estimators to Section E

of the supplementary material.

4.1 Bahadur representations

In this section, we present the Bahadur representation of our weighted SGD update (7) under the

adaptive data collection environment. Specifically, under classical non-adaptive SGD settings (5),

the Bahadur representation is established in Polyak and Juditsky (1992) as,

√
tΣ−1/2(θ̄t − θ∗) = W +Rt,

where W is the leading term in the central limit theorem, i.e., W is a weighted sum of i.i.d. random

variables, it converges to a standard normal distribution as t→∞. The Rt term is the remainder
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term which converges faster than the leading term W under common regularity conditions.

Theorem 4.6. Under the conditions in Theorem 4.2 and ε-greedy algorithm defined in (6), we

further assume:

(a) There exists constant C1 > 0, such that
∫
x>θ[1:p]=x>θ[p+1:2p]

x⊗ x⊗ xp(x) dx ≤ C1 for all θ;

(b) Given θ, θ∗, the following inequality holds for some constant C2 > 0,

E
[∣∣∣1(X>θ∗[1:p] > X>θ∗[p+1:2p]

)
− 1

(
X>θ[1:p] > X>θ[p+1:2p]

)∣∣∣ (1 + ‖X‖4)
]
≤ C2‖θ − θ∗‖.

We have the following decomposition

√
tΣ−1/2(θ̄t − θ∗) =

1√
t

t−1∑
i=1

Σ
−1/2
t Qtiξθ∗(θ

∗; ζi)︸ ︷︷ ︸
W

+
1√
t

t−1∑
i=1

Σ−1/2Qti(ξθi−1
(θi−1; ζi)− ξθ∗(θ∗; ζi))︸ ︷︷ ︸
R1

+
1√
tη0

Σ−1/2Qt0(θ0 − θ∗)︸ ︷︷ ︸
R2

+
1√
t

t−1∑
i=1

Σ−1/2Qti(Lθi(θi)−H(θi − θ∗))︸ ︷︷ ︸
R3

+
1√
t

t−1∑
i=1

(Σ−1/2 − Σ
−1/2
t )Qtiξθ∗(θ

∗; ζi)︸ ︷︷ ︸
R4

= W +R1 +R2 +R3 +R4, (15)

where E[W ] = 0,E[WW>] = Id, Σt = 1
t

∑t−1
i=1Q

t
iSQ

t
i, and Qti = ηi

∑t−1
j=i

∏j
k=i+1(Id − ηkH) for

t > 0. Furthermore, we have,

E‖R1‖2 . t−
α
2 , E‖R2‖2 . t−1, E‖R3‖ . t−α+

1
2 , E‖R4‖2 . t2α−2.

In Theorem 4.6, the remainder term is decomposed into four terms. Here R1 is an accumulated

error produced by the initialization via stochastic gradient approximation in each iteration (i.e., the

difference between the stochastic gradient evaluated at θt and θ∗). The term R2 is the deviation

directly produced by the arbitrary initialization θ0. The term R3 characterizes the quadratic

approximation for a general loss function. Indeed, when the loss function is quadratic (e.g., linear

regression in Example 2.1), we have R3 = 0 since the population Hessian matrix is identical for any
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θ and the loss function L is completely characterized by the multiplication of H and θ − θ∗. The

term R4 is a non-asymptotic compensation to the main asymptotic normal approximation term

W , i.e., W +R4 is the non-asymptotic error when the algorithm is initialized at the truth θ∗ for a

quadratic model.

We defer the proof details to Section C of the supplementary material. Note that to derive

the above decomposition, we require a slightly stronger condition (condition (a) in the theorem

statement) compared with condition (b) in Corollary 4.3. The second condition in Theorem 4.6

requires a certain level of continuity of the distribution of covariate X. These extra conditions can

be easily satisfied, e.g., when X obeys a non-degenerate normal distribution. To characterize the

decomposition, we need a generalization of the coupling we defined in Equation (14). Now let us

consider the (|A| − 1)-simplex S = {(x1, . . . , x|A|) | xi ≥ 0,
∑
xi = 1}. It has |A| vertices given

by Vi = (0, . . . , 0, 1, 0, . . . , 0) where 1 is in the i-th coordinate. Take a point P uniformly from

S. For any categorical distribution with probability (p1, . . . , p|A|), define K = (p1, . . . , p|A|). The

probability that P lies in the sub-simplex with vertices {V1, . . . , V̂i, . . . , V|A|,K} (Vi is deleted) is

exactly pi. Thus, K gives a partition of S that has the required categorical distribution and we

can use this to define the action A. Furthermore, given two different distributions K,K ′, it is easy

to see that the quantity P(A 6= A′) is bounded by CdTV (K,K ′), where C is some constant which

only depends on |A|.

Given the characterization of the remainder terms of the Bahadur representation of θ̄t, we now

emphasize the difference in the convergence rate of the adaptive SGD and the classical SGD results

(Polyak and Juditsky, 1992; Shao and Zhang, 2022). The difference appears only in the term

R1. For the classical SGD, the corresponding term R1 satisfies E‖R1‖2 . t−α, whereas for the

adaptive SGD, we have E‖R1‖2 . t−
α
2 . This slower convergence rate is caused by our adaptive

data collection scheme. As a consequence, under our setting, the remainder term has a rate of

O
(
t−α+

1
2 + t−

α
4 + tα−1

)
. Minimizing the order of the rate over α ∈ (12 , 1), we have that the

optimal convergence rate of the remainder term is O(t−0.2) where α = 0.8.

Remark 4.7. Under the conditions in Corollary 4.3 and ε-greedy algorithm defined in (6), assume

that the distribution of X non-degenerated normal. Then assumptions (a)(b) of Theorem 4.6 hold.
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Note that R3 = 0 in the linear regression setting and R2 depends on the initialization of the SGD

algorithm. We can indeed establish a lower bound for R1 as E‖R1‖2 & t−
1
2 (the detailed proof is

provided in Section C of the supplementary material). The lower bound on R1 does not match the

upper bound established in Theorem 4.6 but it guarantees a strictly slower convergence than the

classical SGD setting where E‖R̃1‖2 . t−α, as we assume α ∈ (1/2, 1).

5 Numerical Experiments

In this section, we investigate the empirical performance of the proposed estimators and their

performance on normal approximation. We further construct the confidence intervals using a plug-

in estimator of the asymptotic covariance matrices and report their coverage rates. The performance

of the proposed estimation and inference is also validated on a real dataset.

5.1 Normal approximation

We verify Theorem 4.2 under linear regression and quantile regression (Example 2.1 and Exam-

ple 2.2). For both examples, we have θ∗ ∈ R20 and

Yt = (1−At)X>t θ∗[1:10] +AtX
>
t θ
∗
[11:20] + Et.

In our numerical experiments below, the sample size is fixed as 80, 000. The covariateXt ∼ N (0, I10)

and the error term {Es}ts=1 is an i.i.d. sample with standard deviation σ = 0.1. We use ε-greedy

policy (6) to select actions, and set ε = 0.02.

For the SGD update (7), we specify the step sizes as ηt = η ∗ max(t, 300)−α. As indicated in

Theorem 4.6, the optimal value for the parameter α in the step size should be α = 0.8. We specify

α = 0.8 for both linear regression and quantile regression. We compare three weighting schemes

below, vanilla SGD (5), square-root IPW SGD (12), and IPW SGD (11).

We first present the results for linear regression, where the error term E ∼ N (0, σ2). In Figure 1

below, we plot the empirical distribution of
√
t(θ̄t − θ∗) using 10, 000 Monte-Carlo simulations. As

can be inferred from the plots, the vanilla SGD and the square-root importance weight SGD have

much smaller standard deviation compared with IPW SGD, this finding matches our discussion in
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(a) vanilla arm 0 (b) vanilla arm 1

(c) square-root importance arm 0 (d) square-root importance arm 1

(e) IPW arm 0 (f) IPW arm 1

Figure 1: SGD on linear regression with different weights. We report the empirical distribution

(one dimension for each arm) of
√
t(θ̄t − θ∗) for 10, 000 Monte-Carlo simulations. We also plot the

density function of a zero-mean normal distribution that match the second-order moments.
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(a) vanilla arm 0 (b) vanilla arm 1

(c) square-root IPW arm 0 (d) square-root IPW arm 1

(e) IPW arm 0 (f) IPW arm 1

Figure 2: SGD on quantile regression with different weights. We report the empirical distribution

(one dimension for each arm) of
√
t(θ̄t − θ∗) for 10, 000 Monte-Carlo simulations. We also plot the

density function of a zero-mean normal distribution that match the second-order moments.
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Section 3.

We also conduct simulations on quantile regression in Figure 2 below with quantile level τ =

0.75, and the error term has standard deviation σ = 0.1 and P(E ≤ 0) = τ .

5.2 Online statistical inference

In this section, we demonstrate the online plug-in inference procedure based on the limiting dis-

tribution of our proposed estimator θ̄t in Theorem 4.2. As we mentioned in the previous section,

the plug-in estimator constructs a pair (Ŝn, Ĥn) to estimate (S,H) in the asymptotic covariance

matrix H−1SH−1.

Ŝn =
1

n

n∑
t=1

w2
t∇`(θt−1; ζt)∇`(θt−1; ζt)>, Ĥn =

1

n

n∑
t=1

wt∇2`(θt−1; ζt).

The consistency of the plugin estimator is established under the following additional assumption,

which can be easily verified for the linear regression example.

Assumption 6. For any action A ∈ A and covariate X, we assume that ∇2`(θ; ζ) exists and

EPY |X
(
‖∇2`(θ; ζ)‖2 | X,A

)
is bounded by ψ(X)(1 + ‖θ − θ∗‖2) for some function ψ(·) such that

E[ψ(X)] <∞. We have,

lim
θ→θ∗

EPX [∆(X, θ)ψ(X)] = 0,

lim
θ→θ∗

EPY |X
[
‖∇2`(θ; ζ)−∇2`(θ∗; ζ)‖2 | X,A

]
= 0,

lim
θ→θ∗

EPX
[
|w(θ;X,A)− w(θ∗;X,A)|2ψ(X) | A

]
= 0.

Proposition 5.1. Under Assumption 1 to Assumption 6, the plug-in estimators are consistent,

i.e., Ŝn → S and Ĥn → H in probability.

The proof is presented in Section E of the supplementary materials. Under the same setting as

in Section 5.1, we show the inference results for linear regression in Table 1. The comparison of the

three candidate weighted-SGD schemes is clearly stated. Both the vanilla method and sqrt-IPW

provide a valid conference interval, while IPW provides a much wider confidence interval than its

oracle.
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Weight & Arm Sample size Plug-in Cov. Oracle Cov. Plug-in Len. Oracle Len.

2× 104 0.78 (0.14) 0.73 (0.15) 0.63 (0.03) 0.55
vanilla Arm 0

8× 104 0.88 (0.09) 0.86 (0.09) 0.57 (0.01) 0.55

2× 104 0.89 (0.09) 0.83 (0.12) 0.63 (0.03 ) 0.55
vanilla Arm 1

8× 104 0.94 (0.07) 0.93 (0.08) 0.58 (0.01) 0.55

2× 104 0.78 (0.14) 0.72 (0.15) 0.82 (0.12) 0.72
sqrt-IPW Arm 0

8× 104 0.88 (0.10) 0.87 (0.11) 0.74 (0.04) 0.72

2× 104 0.84 (0.12) 0.78 (0.14) 0.83 (0.13) 0.72
sqrt-IPW Arm 1

8× 104 0.91 (0.09) 0.90 (0.10) 0.75 (0.05) 0.72

2× 104 0.81 (0.15) 0.47 (0.32) 19.18 (34.94) 2.79
IPW Arm 0

8× 104 0.85 (0.14) 0.62 (0.33) 13.04 (28.04) 2.79

2× 104 0.82 (0.15) 0.51 (0.32) 16.76 (32.12) 2.79
IPW Arm 1

8× 104 0.86 (0.13) 0.65 (0.32) 11.47 (25.80) 2.79

Table 1: Inference results of linear regression with different weighting schemes. Averaged coverage

rate and average length of the confidence intervals are reported for plug-in estimator and oracle

estimator. We also include standard error in the parentheses.
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5.3 Real data analysis

In this section, we apply our online estimation and inference framework to Yahoo! Today module

user click-log dataset and conduct statistical inference for model parameters. We use the news

recommendation and user response records on May 1st, 2009. On this day, we consider the two

most recommended (recommended 405, 888 times) articles, No.109510 and No.109520 for analysis.

We follow the experiment settings in Chen, Lu and Song (2021b). The action At is specified to

be 1 when Article No.109510 is recommended and At = 0 when Article No.109520 is recommended.

The original user features have six covariates, where the first five sum up to one, and the sixth is a

constant 1. In our experiments below, we keep the second to fifth covariates in the original features

as X[2:5] and specify X[1] = 1 as the intercept.

As the reward Yt is binary, we consider a logistic regression model and set Yt = 1 if the user

clicks on the article link and Yt = −1 if not. The logistic loss is defined as follows,

`(θ; ζt) = (1−At) log
{

1 + exp
(
−yt(X>t θ[1:5])

)}
+At log

{
1 + exp

(
−yt(X>t θ[6:10])

)}
. (16)

Under the weighted SGD setting (7), we have

θ[1:5],t = θ[1:5],t−1 + ηtwt

[
1 + exp

(
ytX

>
t θ[1:5],t−1

)]−1
ytXt, At = 0;

θ[6:10],t = θ[6:10],t−1 + ηtwt

[
1 + exp

(
ytX

>
t θ[6:10],t−1

)]−1
ytXt, At = 1.

We use the ε-greedy algorithm (6). In order to match our online decision-making process with our

offline dataset, we keep the entry if the recorded offline action matches the action given by our

online ε-greedy algorithm with two specifications of ε ∈ {0.2, 0.02}.

We now present the online statistical inference results. For our SGD update, we use the same

settings as above experiments, i.e., 300-step meltdown and α = 0.8. We compare three weighting

schemes below, vanilla SGD (5), square-root importance weight SGD (12), and IPW SGD (11).

Table 2 below gives the result for ε = 0.2 and Table 3 gives the result for ε = 0.02. In both table,

the vanilla SGD and the square-root importance SGD have smaller standard errors and smaller

p-values. There are also more insignificant parameters for IPW SGD. The results of IPW SGD

are worse when we decrease the value of ε, matches our findings in Theorem 4.2 and discussions in

Section 3.
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Weight & Arm Parameter Estimate S.E. 95% LB 95% UB t-value p-value

θ1 -2.56 0.04 -2.64 -2.48 -65.52 0.00

θ2 -0.26 0.08 -0.43 -0.1 -3.11 0.00

θ3 -0.48 0.07 -0.62 -0.34 -6.8 0.00

θ4 -0.23 0.06 -0.34 -0.12 -4.09 0.00

vanilla Arm 0

θ5 -0.9 0.07 -1.03 -0.77 -13.65 0.00

θ6 -2.55 0.05 -2.65 -2.44 -47.77 0.00

θ7 -0.24 0.08 -0.4 -0.09 -3.06 0.00

θ8 -0.45 0.07 -0.58 -0.32 -6.76 0.00

θ9 -0.41 0.11 -0.62 -0.19 -3.71 0.00

vanilla Arm 1

θ10 -0.91 0.07 -1.05 -0.77 -12.31 0.00

θ1 -2.52 0.05 -2.62 -2.43 -52.85 0.00

θ2 -0.3 0.11 -0.51 -0.09 -2.79 0.01

θ3 -0.49 0.09 -0.66 -0.31 -5.56 0.00

θ4 -0.28 0.07 -0.4 -0.15 -4.25 0.00

sqrt-IPW Arm 0

θ5 -0.8 0.09 -0.97 -0.63 -9.33 0.00

θ6 -2.51 0.05 -2.61 -2.41 -49.35 0.00

θ7 -0.28 0.08 -0.43 -0.13 -3.6 0.00

θ8 -0.45 0.06 -0.58 -0.33 -7.1 0.00

θ9 -0.42 0.11 -0.63 -0.2 -3.83 0.00

sqrt-IPW Arm 1

θ10 -0.81 0.07 -0.94 -0.68 -12.02 0.00

θ1 -2.64 0.1 -2.85 -2.44 -25.54 0.00

θ2 -0.28 0.19 -0.64 0.08 -1.51 0.13

θ3 -0.51 0.15 -0.8 -0.23 -3.49 0.00

θ4 -0.24 0.16 -0.55 0.07 -1.54 0.12

IPW Arm 1

θ5 -0.91 0.16 -1.23 -0.59 -5.64 0.00

θ6 -2.47 0.03 -2.53 -2.4 -76.6 0.00

θ7 -0.22 0.06 -0.33 -0.11 -3.83 0.00

θ8 -0.51 0.05 -0.6 -0.42 -11.08 0.00

θ9 -0.37 0.05 -0.47 -0.27 -7.4 0.00

IPW Arm 1

θ10 -0.88 0.05 -0.98 -0.78 -17.67 0.00

Table 2: Real data analysis with online statistic inference. We use ε-greedy algorithm with ε = 0.2.
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Weight & Arm Parameter Estimate S.E. 95% LB 95% UB t-value p-value

θ1 -2.55 0.04 -2.63 -2.48 -68.62 0.00

θ2 -0.31 0.09 -0.47 -0.14 -3.61 0.00

θ3 -0.45 0.07 -0.6 -0.31 -6.18 0.00

θ4 -0.23 0.05 -0.33 -0.12 -4.29 0.00

vanilla Arm 0

θ5 -0.88 0.07 -1.01 -0.75 -13.45 0.00

θ6 -2.54 0.06 -2.66 -2.42 -41.76 0.00

θ7 -0.29 0.09 -0.45 -0.12 -3.36 0.00

θ8 -0.42 0.07 -0.57 -0.28 -5.88 0.00

θ9 -0.42 0.19 -0.79 -0.04 -2.18 0.03

vanilla Arm 1

θ10 -0.89 0.08 -1.04 -0.73 -11.25 0.00

θ1 -2.49 0.05 -2.58 -2.4 -54.74 0.00

θ2 -0.31 0.13 -0.57 -0.05 -2.37 0.02

θ3 -0.45 0.12 -0.68 -0.21 -3.74 0.00

θ4 -0.29 0.06 -0.41 -0.17 -4.78 0.00

sqrt-IPW Arm 0

θ5 -0.82 0.08 -0.98 -0.66 -9.8 0.00

θ6 -2.48 0.08 -2.64 -2.33 -31.13 0.00

θ7 -0.29 0.1 -0.5 -0.09 -2.84 0.00

θ8 -0.42 0.09 -0.6 -0.25 -4.69 0.00

θ9 -0.4 0.25 -0.9 0.09 -1.6 0.11

sqrt-IPW Arm 1

θ10 -0.82 0.1 -1.01 -0.63 -8.49 0.00

θ1 -2.75 0.33 -3.4 -2.11 -8.37 0.00

θ2 -0.22 0.57 -1.35 0.9 -0.39 0.70

θ3 -0.8 0.5 -1.78 0.18 -1.59 0.11

θ4 0.11 0.39 -0.65 0.87 0.28 0.78

IPW Arm 0

θ5 -0.9 0.51 -1.89 0.09 -1.78 0.08

θ6 -2.4 0.09 -2.57 -2.23 -27.81 0.00

θ7 -0.33 0.14 -0.6 -0.07 -2.46 0.01

θ8 -0.33 0.08 -0.48 -0.17 -4.17 0.00

θ9 -0.55 0.3 -1.14 0.05 -1.81 0.07

IPW Arm 1

θ10 -1.14 0.2 -1.53 -0.76 -5.81 0.00

Table 3: Real data analysis with online statistic inference. We use ε-greedy algorithm with ε = 0.02.
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